Utilizing Animal Audiograms for the Development of Safe and Shared Ecosystems

Anuraag Karunakaran

University of Maryland, Baltimore County

Objective

 To harness animal audiograms for developing technologies that enhance safety and balance in shared ecosystems. This approach aims to optimize human-wildlife interactions through precise sound-based species identification and behavior monitoring.

Problem

- Existing wildlife deterrence systems often rely on ultrasonic sounds triggered by motion sensors. These systems typically emit a single frequency, which can be problematic.
- Animals can become habituated to the constant sound, rendering the deterrence ineffective over time.
- The constant triggering just based on motion can inadvertently harm non-target species, causing distress to animals they are not intended to deter.(e.g. bees, birds even pets)

Proposed Solution

• We aim to develop a wildlife interaction system that identifies the specific animal present and adjusts the signal's type and frequency accordingly only when unwanted wildlife is perceived. This approach seeks to create a more ethical and effective deterrence method.

Vision System

Animaľ

Human

Dog

Rabbit

Deer

Squirrel

Hearing

Frequency (Hz)

64 - 23,000

67 - 45,000

360 - 42,000

250 - 30000

113 - 49000

 A Raspberry Pi and camera setup classifies common animals and humans. This allow us to determine what animals are on screen and if an interaction is needed

Sound System

 Sound emission unit that is triggered by Vision System to perform certain action upon detected animals.

• Sound Component: The system comprises an Arduino Nano, signal generator, audio amplifier, speaker, and motion sensor. The Arduino Nano communicates with the vision system and sends a specified signal to the speaker.

• Motion Sensor Functionality: Initially used solely as a detection sensor, the motion sensor now also triggers the vision system, improving energy efficiency.

•Dynamic Sound Wave Generation: For targeted and humane deterrence by adjusting frequencies and types of sound based on the specific animal detected. This approach prevents habituation, minimizes impact on non-target species, and adapts to environmental factors for optimal effectiveness. We can randomize frequencies from 0 - 12.5 MHz and use 3 types of signals, square, triangle and sine waves

Future Work

- The system not only deters animals but also monitors and differentiates them, providing more possibilities for interaction.
- Multiple sound components linked to one vision system allow for randomized deterrence, keeping animals away from specific areas.

References

- "How Well Do Dogs and Other Animals Hear?" Frequency Hearing Ranges in Dogs and Other Species, www.lsu.edu/deafness/HearingRange.html. Accessed 31 July 2024.
- D'angelo (2007), Hearing Range of White-Tailed Deer as Determined by Auditory Brainstem Response. The Journal of Wildlife Management, 71: 1238-1242. <u>https://doi.org/10.2193/2006-326</u>
- Tirupal, T. (2020). The Influence of Ultrasound for the Protection of Animals on Highways. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.12309038.v1

Acknowledgement

 Support for this research was provided by the University of Maryland Baltimore County Faculty Entrepreneurship Accelerator Fund (FEAT2405) and NSF REU Site Grant (#2050999).