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Abstract—Millimeter-wave (MMW) radar is becoming an es-
sential sensing technology in smart environments due to its light
and weather-independent sensing capability. Such capabilities
have been widely explored and integrated with intelligent ve-
hicle systems, often deployed in industry-grade MMW radars.
However, industry-grade MMW radars are often expensive and
difficult to attain for deployable community-purpose smart envi-
ronment applications. On the other hand, commercially available
MMW radars pose hidden underpinning challenges that are yet
to be well investigated for tasks such as recognizing objects,
and activities, real-time person tracking, object localization, etc.
Such tasks are frequently accompanied by image and video
data, which are relatively easy for an individual to obtain,
interpret, and annotate. However, image and video data are light
and weather-dependent, vulnerable to the occlusion effect, and
inherently raise privacy concerns for individuals. It is crucial to
investigate the performance of an alternative sensing mechanism
where commercially available MMW radars can be a viable
alternative to eradicate the dependencies and preserve privacy
issues. Before championing MMW radar, several questions need
to be answered regarding MMW radar’s practical feasibility and
performance under different operating environments. To answer
the concerns, we have collected a dataset using commercially
available MMW radar, Automotive mmWave Radar (AWR2944)
from Texas Instruments, and reported the optimum experimental
settings for object recognition performance using several deep
learning algorithms in this study. Moreover, our robust data
collection procedure allows us to systematically study and identify
potential challenges in the object recognition task under a cross-
ambience scenario. We have explored the potential approaches
to overcome the underlying challenges and reported extensive
experimental results.

Index Terms—MMW Radar, Cross-Ambience, Cross-Distance,
Cross-Height, Robotics, Object Recognition, Smart Sensing, Do-
main Adaptation.

I. INTRODUCTION

Visual data, such as images and videos, has been extensively

used in building smart environments for various applications,

including remote monitoring, security management, object

recognition, tracking mobile objects, autonomous agents, and

more [1]–[4]. However, imaging as a sensing mechanism

is susceptible to environmental factors such as lighting and

weather [5], and the privacy of individuals may be com-

promised when captured by cameras. Under certain circum-

stances, privacy is a non-negotiable constraint, and therefore,
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the response to the concerns mentioned below related to visual

data may not be positive.

1) would the tenants in an elderly care home be comfortable

and agree to be watched 24 hours by multiple cameras?

2) how would a camera-based system respond, if a person

is lying on the kitchen floor due to sickness at night?

3) can the tiny hazardous material in a playing grass field

be identified by images?

The above concerns have motivated us to explore an active

sensing mechanism such as RADAR-based technology that

has the potential to bypass the constraints of privacy and

environmental dependencies. Note that, RADAR technology

with various capacities has been explored in numerous ap-

plications such as remote monitoring [6], security manage-

ment [7], object recognition [8], tracking mobile objects [9],

[10], autonomous agents (unmanned ground vehicle) [11]

and many more. We find that these radar technologies are

often expensive, difficult to develop in a timely manner, and

require substantial domain knowledge [6] which is a deterrent

factor for a community-based deployment. MMW radar is

a recent addition to the radar technology pool that projects

short wavelength (30-300GHz) electromagnetic waves as short

pulses and receives the reflected pulses from the objects

that lie in its projection path [12] as depicted in Figure 1.

MMW radar is commercially available and can be integrated

with research-grade programmable autonomous agents and

vehicles [11], [13]–[15]. However, MMW radar is not entirely

free of constraints, which leads us to conduct this systematic

study and investigate those underpinning challenges.
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Fig. 1: MMW radar’s basic principles.

Most of the literature that has been discussed in Section II

involves large objects [16] and ignores smaller objects under

varying environmental conditions where the next one pose

several challenges. The challenges become more severe when

we use the sparse point cloud data of the MMW radar.
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First, Impact of object size and shape - hazardous objects

such as broken metal prongs, pets in a home environment,

electronic devices, and lanyards are often small in shape,

therefore small surface area to receive and reflect the radar

signal. Second, Operating Environment - often objects are

composed of materials with varying reflective characteristics.

When radar projects a millimeter wave on an object, the result-

ing reflected signal waves carry varied signal-to-noise ratios.

The reflected signal from the surrounding objects complicates

the final received signal and therefore the object recognition

task. Third, Radar Position and Distance - radar position and

the relevant distance from the object are another impacting

factor. Consider the top and side view of a smartphone as

depicted in Figure 2 and the change in the surface area is

obvious. In addition, as the distance between the radar and

the object increases, the projected signal diverges into a wider

area, resulting in an attenuation of the received signal. Cur-

rently, the object recognition performance of a commercially

available MMW radar under varying shapes, environments,

and dynamic settings is unknown.

Fig. 2: Smart phone’s top and side view.

In this study, we make the following contributions -

1) We develop models to recognize small-sized objects using

low-resolution and sparse point cloud MMW radar data

in three indoor and outdoor environments with varying

settings, including static or dynamic radar projection and

height or distance.

2) We are using domain adaptation techniques to improve

the robustness of a deep learning model on a large

scale, specifically for recognizing small objects in low-

resolution and sparse point cloud data obtained from

MMW radar. To the best of our knowledge, this is the

first study to explore domain adaptation for these types

of objects.

3) We have validated our proposed system by conducting

experiments in sunny outdoor, well-lit indoor, and dark

indoor settings with a large-scale dataset collected using

a TI AWR2944 MMW radar. Particularly, we focus on a

feasibility study to recognize varying-sized small objects

such as dimes, pencils, plastic sheets, quarters, Unnamed

Ground Vehicle (UGV), water bottles, wood, pencils,

and paper under varying environmental settings (dis-

tance, height, lighting, backgrounds) and collect around

five hours of the MMW dataset [17]. Our DA-based

approaches have provided robustness against dynamic

factors’ variation between training and test data and

achieved a 0.898 F1-score.

The study is organized as follows - Section II discusses

recent works on MMW radar. Data-gathering and processing

techniques are described in Section III. The model training

mechanism is elaborated in Section IV. Section V reports the

experimental settings, results, and findings, and Section VII

concludes the study.

II. RELATED WORKS

In this section, we briefly discuss the MMW radar-based

approaches: First, we discuss the literature where MMW radar

is deployed as an individual sensor unit and, second, when

MMW radar is associated with other sensor units.

A. MMW Radar-based approaches
MMW radar is widely used for various research purposes,

including human motion behavior detection [18], periodic

heart rate measurements [19], navigation [20], tracking mul-

tiple persons [10], pose detection [21] and estimation [22],

human activity recognition [23], security [7], autonomous

driving [14], [24], human face and emotion recognition [25],

[26]. [18] senses the micro-Doppler information of the user

and detects the motion behavior. mBeats [19] measures heart

rate in different poses in an unobtrusive manner. [22] leverages

two radar data points for human pose estimation. Two radar

points are used to generate heatmaps, and Convolutional

Neural Network is deployed to transform the two-dimensional

heatmaps into a human pose. [23] proposes RadHAR, a

low-cost human activity recognition framework that leverages

sparse and non-uniform point clouds from an MMW radar. [7]

has proposed a secure method for speaker verification using

MMW radar to prevent an adversarial attack and enhance the

home security. Authors have utilized the radar to capture both

vocal cord vibration and lip motion for identifying speak-

ers. [24] proposes a new MMW radar point cloud classification

algorithm to improve human-vehicle classification accuracy in

complex scenes of autonomous driving.

B. MMW Radar with other sensor modalities
Aside from being deployed as a standalone sensor modality,

MMW radar has also been widely used as a vision-based

sensor modality, mainly to overcome the critical limitations of

visibility of vision-based approaches in the absence of light.

[27] has proposed a fusion-based approach where MMW radar

is used for obstacle detection and features are fused with

the vision sensor feature. [28] proposes a new radar-camera

fusion system that takes into consideration the error bounds of

the two different coordinate systems from the heterogeneous

sensors. The authors have utilized a new fusion-extended

Kalman filter to adapt to the heterogeneous sensors. [29]

proposes a framework called milliEye, a lightweight MMW

radar and camera fusion system for robust object detection

on edge platforms. milliEye possesses several key advantages

over existing sensor fusion approaches. [8] proposes a deep

radar object detection network, named RODNet, which is

cross-supervised by a camera-radar fused algorithm. RODNet

considers object detection in various driving scenarios.
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C. Differences with existing approaches

Advanced driver assistance systems (ADAS) and au-

tonomous driving applications in the automotive sector uti-

lize MMW radar [14] for more user-centric features. For

example, MMW radar can identify obstacles like vehicles

and pedestrians on the road and notify the driver. Gao et

al. have created a large raw radar dataset for various objects

using data from Angle of Arrival, Doppler Velocity, and other

sources under different scenarios [30]. [9] detects cyclists,

pedestrians, and vehicles by converting the position, velocity,

and RCS information into images obtained from the MMW

radar. [14] has utilized range velocity heatmaps for differ-

entiating between vehicles and pedestrians. Moreover, [16]

has proposed mmWave-YOLO for detecting humans, cones,

bicycles, signboards, fences, and riders using radar cross-

section data. Most of the previous studies have focused on

detecting cars, people, and bicycles using MMW radar data.

The previous studies have focused on larger subjects, while

our study examines smaller objects typically found indoors or

outdoors.

In this study, the statistical features of radial distance,

signal-to-noise ratio, and the statistical nature of the noise have

been investigated. MMW radar enabling object recognition

may be a promising technology for the smart home industry,

which has potential uses in energy optimization, security,

and human-machine interfaces. Therefore, we are interested

in learning more about MMW radar’s particular modality’s

ability to recognize objects. From an implementation point

of view, we have considered two scenarios. Firstly, objects

of smaller dimensions such as dimes, lead pencils, plastic

sheets, wood, and quarters have been investigated when the

radar is in a static state. For the dynamic state of MMW

radar, we have considered five different objects: Unnamed

Ground Vehicle (UGV), water bottles, plastic sheets, paper,

and clothes. In a static state, we are thinking of finding objects

on the floor or in a green field. While the radar emits signals

vertically, it requires additional time to receive the signals.

If it is in motion, it will be difficult to receive the signal.

For this reason, we position the radar horizontally when it

is static. The moving radar emits horizontal signals. At the

state of motion, the radar receives the signal in a vertical

orientation. That’s why we place the radar vertically when

the radar is dynamic. According to the position and status of

the MMW radar, we want to measure how well it performs.

When the position and condition of the MMW radar change,

different objects are taken into consideration. Due to the size

of the object-to-wavelength ratio and different environmental

ambience, detecting small objects by MMW radar involves

additional technical challenges such as a high signal-to-noise

ratio, obfuscation, etc.

As we are getting time-series MMW radar data, we have

applied a 1D Convolutional Neural Network (CNN) to rec-

ognize the objects. Other researchers have used 2D CNN [9]

instead of 1D CNN, but 1D CNN performs satisfactorily due

to the nature of our data. The 1D CNN has achieved 95%

accuracy, which is covered in section V.

III. DATASET

mmWaves are short-wavelength electromagnetic waves that

fall in the frequency range of 30-300 GHz (1 millimeter to 1

centimeter) [12]. This radar is used for precisely measuring

the distance of an object, its velocity, and its angle with no

or little interference [12]. In this section, we describe the data

collection procedure and data preprocessing of this systematic

study.

A. Data Collection

Firstly, we consider MMW radar as static. We leverage an

MMW radar that is integrated with a commodity, low-cost

robot tool kit called TurtleBot3 1 as depicted in Figure 3(a).

Secondly, we consider MMW radar as dynamic. Figure 3(b)

depicts the vertical positioning of the radar for data collec-

tion. Communication between TurtleBot3 and MMW radar

is interfaced with the TurtleBot3 via the Raspberry Pi 4B.

The radar operates with a sampling frequency of 76–81 GHz
and a wavelength of about 4 mm (approximately 0.16 inches).

MMW radar provides a 3-axis radial distance, signal-to-noise

ratio (SNR), and noise after blending the transmitted and

reflected signals from the object that lies in the radar projection

path.

(a) (b) (c)

Fig. 3: (a) The red MMW radar is integrated with Turtlebot3,

positioned over a black lead pencil, powered by black cables,

and charged using a blue charger, (b) integrated with Turtle-

bot3, the red MMW radar emits horizontal signals to recognize

objects, (c) collecting data at a distance of 84 inches in lab

light by moving the radar at a constant velocity.

In this study, the impact of height and lighting conditions on

static radar data collection is examined. Two different heights

are considered: placing the TurtleBot3 on the ground, where

the radar is 7 inches vertically apart from the ground, and

placing it at a height where the radar is 53 inches from the

ground. Five different objects ( dime (10 cent US coin), quarter

(25 cent US coin), lead pencil, plastic sheet, and wood) made

of four different materials are used, and data is collected for

two minutes at different angles for each object under three

different lighting conditions: sunny, indoor room environment

with light (Lablight), and indoor room environment without

light (Night). Data collection is done outside with natural

light for the sunny condition and inside a lab with white

1https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
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light or without white light for the other two conditions.

Figure 4 and 5 depict the data distribution under various

lighting conditions for static radar. To study the impact of

distance and lighting conditions on moving radar, two different

distances are considered: placing the TurtleBot3 on the ground,

where the radar is 42 inches horizontally apart from the

objects, and placing it in a certain position where the objects

are 84 inches away from the radar. Five distinct objects made

(UGV, water bottle, plastic sheet, paper, and clothes) of four

different materials are used, and data is collected for two

minutes at different angles for each object under three different

lighting conditions. The radar is moved back and forth towards

the objects at different angles with a uniform velocity of 0.025

meters per second, which is shown in Figure 3(c). The sample

count of objects is lower when the MMW radar is in a dynamic

state, as the receiver cannot catch all of the signals. We put

five different things either below or in front of the radar,

depending on whether the radar sends out signals vertically

or horizontally. Overall, six sets of datasets are needed to

continue this systematic study. Figure 6 and 7 depict the data

distribution under various lighting conditions for moving radar.

(a) (b) (c)

Fig. 4: Data distribution in sunny (L), lablight (M), and night

(R) environment for height 7 inches (when the radar is static).

(a) (b) (c)

Fig. 5: Data distribution in sunny (L), lablight (M), and night

(R) environment for height 53 inches (when the radar is static).

(a) (b) (c)

Fig. 6: Data distribution in sunny (L), lablight (M), and night

(R) environment for distance 42 inches (when the radar is

dynamic).

B. Data Preprocessing

Several statistical features such as standard deviation, vari-

ation, mean, minimum, and maximum are calculated from

(a) (b) (c)

Fig. 7: Data distribution in sunny (L), lablight (M), and night

(R) environment for distance 84 inches (when the radar is

dynamic).

the MMW radar data, and the extracted features are further

standardized by applying standard scalars from the Sci-kit

python library. The normalized dataset is being split in a

stratified manner into a 70–30% ratio, with 70% of the data

used for training and 30% for testing. This stratification

ensures that both training and testing data are representative

of each class. The training data is directly fed to the Fully

Connected Layer (FCL), regardless of whether the radar is in

a static or dynamic state. For recognizing objects with dynamic

or static radar at longer distances or heights, we have applied

1D CNN for better recognition. For generating the input for

1D CNN, we have combined 10 samples to create a 40× 16
frame. Later, flatten the 40×16 frame to feed into the 1D CNN

layer. To create the 40×16 frame, we have first taken samples

from the datasets spanning rows 1 through 40 and then rows

2 through 41, which is true for the rest of the data samples.

Here, 40 rows indicate 4s of data captured by MMW radar.

To ensure consistency, we apply windowing to process the

continuous data obtained from the same objects. Each window

consists of 40 rows, which corresponds to a 4-second MMW

radar data acquisition. Our analysis shows that 4 seconds of

data are necessary for accurate recognition.

In the next section, we describe the deep models that are

used for our feasibility studies.

IV. METHODOLOGY

To explore the feasibility of using low-resolution and sparse

point cloud data for object recognition, we employ two distinct

deep learning frameworks: one that utilizes a FCL, and the

other that is based on a CNN. Next, we have used the

domain adaptation methods [31] to increase the robustness of

the CNN-based deep learning model. We have described the

results of FCL and CNN in section V.

1) Training Mechanism of Fully Connected Layer: A 3-

layer fully connected Multi-Layer Perceptron (MLP) as the

object recognizer train the model in a supervised manner

which is illustrated in Figure 8(a). The first two layers consist

of 16 computation units followed by a Rectified Linear Unit

(ReLU), and the final layer is followed by a Softmax layer. We

input the extracted features into the model and train it using

the categorical cross-entropy loss in a supervised fashion as

described in Equation 1.

Lcce = −
C∑
i=1

tilog(pi) (1)
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where C is the total number of classes (objects), ti is the

ground truth, and pi is the Softmax probability of the object

recognizer.
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Fig. 8: Overall process of object recognition using MMW radar

(a) processed MMW radar’s data is fed into the FCL for object

recognition, (b) processed MMW radar’s data is fed into the

CNN, which is used for feature extraction, and a FCL is used

for recognizing the objects.

2) Training Mechanism of CNN-based Deep Learning
Model: The CNN-based deep learning framework is illustrated

in Figure 8(b) and can be categorized into three distinct

modules: the feature extraction module (shown in green color),

the object recognition module (shown in yellow color), and

the domain discriminator module (shown in maroon color).

The feature extraction module consists of three distinct 1D

Convolutional (Conv1D) layers with ReLU activation layers.

On the other hand, the object recognizer module comprises two

FC Layers. Finally, the domain adaptation module comprises

one FC Layer along with two outputs in the final layer. We

have provided details of the architecture settings in Table I for

easy reference.

TABLE I: Architecture hyper-parameters.

Hyper-parameters Values
Convolution filter no. 1x311,1x146,1x64
Convolution filter dimension 1x20,1x20,1x20
Stride 2
No. of units in object recognizer module 64,32,16,5
No. of units in domain adaptation module 64,32,2

The framework has demonstrated promising results in rec-

ognizing different objects, and the domain adaptation mech-

anism has helped to improve the adaptability of the deep

learning model. For our feasibility study, we have used the

feature extractor and object recognizer modules. We have

trained the network in a supervised manner using a labeled

dataset that has been collected. A batch-wise categorical cross-

entropy loss function has been used, which is described in

Equation 1.

Next, we extend the deep learning model’s robustness for

object recognition using domain adversarial methods [31].

We use the same CNN model for recognizing the objects

and add a domain classifier (shown in maroon color in

Figure 8(b)). The domain classifier and feature extractor in our

investigation both use an adversarial strategy. Both modules

accept features from datasets with and without labels. The

domain classifier attempts to predict the source originality of

the incoming features, whereas the feature extractor operates to

negate this goal. The target dataset is an open dataset without

available labels, whereas the source dataset has labels. While

both modules process samples of labeled and unlabeled data

during adaptation, the object recognizer only uses the labeled

dataset from the source domain. When the model has been

worked in a semi-supervised manner, fewer labels from the

target domain have been used. We use the gradient reversal

layer implementation from the work [31], as indicated in

Equations 2, 3 and 4 to accomplish this strategy.

θfe = θfe − μ

(
∂Li

or

∂θfe
− ∂Li

dc

∂θfe

)
(2)

where ∂Lor

∂θfe
is the gradient of the loss function object recog-

nizer Lor with respect to the feature extractor θfe, and ∂Ldc

∂θfe

is the gradient of the loss function domain classifier Ldc with

respect to the feature extractor θfe and μ is the learning rate.

θor = θor − μ
∂Li

or

∂θor
(3)

where ∂Lor

∂θor
is the gradient of the loss function Lor with

respect to the object recognizer θor.

θdc = θdc − μ
∂Li

dc

∂θdc
(4)

where ∂Ldc

∂θdc
is the gradient of the loss function Ldc with

respect to the domain classifier θdc.

V. SYSTEMATIC STUDY

We report our experimental findings in this section. We

have executed the experiments on an NVIDIA GeForce RTX

3060 graphics card. In different experiments throughout this

systematic study, we consider micro-F1 as the evaluation

metric as the data distribution is imbalanced [32]. Micro-F1

score is not biased to the majority samples.

A. When MMW radar is static

1) Impact of Ambience: In this study, we investigate how

different surface materials affect the reflected radar signal and

ultimately the recognition of objects. The radar projects a

signal from a high elevation onto the surface and receives the

reflected signal from various objects in its path. As the surface

can be made up of different materials, the reflectivity of the

signal can be altered. We conduct experiments to recognize

objects in three different environments while maintaining a

fixed distance. We collect training and testing samples from

the same environment at a fixed height. The findings are

represented in Figure 9(a) and Figure 9(b). For 7 inches

and 53 inches of the MMW radar, we have used the FCL

and CNN. The recognition performance of FCL and CNN is

approximately 85%.

Key Takeaways:
• A sunny environment (outdoor) provides better recogni-

tion performance than an indoor environment (lab envi-

ronment with light and without light). It’s true both for

FCL and CNN methods. Here, the outdoor environment
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is made of a concrete surface, whereas the indoor envi-

ronment’s surface is an office floor carpet that is typically

made of nylon, olefin, or polypropylene.

• Within an indoor environment, FCL’s performance drops

even more when the height is increased, but CNN can

hold the performance due to its complex feature-learning

nature. We hypothesize that as the height increases, the

projected radar signal covers more area compared to the

lower height. As the area coverage increases, the reflected

signal is impacted by the surrounding objects in the lab

that are not recognized by FCL. CNN can recover it using

more complex features, which are shown in Figure 9(b).

�������	��
����
����

(a)

�������	��
����
����

(b)

Fig. 9: Performance of different deep learning models under

two conditions: same ambiance and cross-ambiance, for simi-

lar heights (a) for a vertical height of 7 inches, (b) for a vertical

height of 53 inches.

�������	��
����
����

(a)

�������	��
����
����

(b)

Fig. 10: Performance of different deep learning models under

two conditions: same and cross-ambiance for similar distances.

(a) For a horizontal distance of 42 inches, (b) for a horizontal

distance of 84 inches.

2) Impact of Cross-Ambience: In this experiment, we study

the impact of the collected data in different environments.

Similar to the previous study, during training and testing,

we leverage the dataset from the same height but vary in

respect of the collected environment. Consider two datasets

of 53 inches in height—one from the sunny environment

and another one from the lablight environment. We train the

model using the sunny environment dataset and test it in the

lablight environment. This study’s experimental findings are

summarized in Figure 9(a) and Figure 9(b).

Key Takeaways:
• When the ambience of the training and testing datasets

differs, the performance drops significantly, and it drops

even more when the height is increased. Figure 9(a) and

Figure 9(b) indicate that under cross-ambience evaluation,

height 53 performs even worse than height 7. We have

used an unsupervised domain adaptation (UDA) and

semi-supervised domain adaptation (SSDA) method with

10% and 20% labeled data from the target domain to

solve this problem. Figure 9(a) and Figure 9(b) demon-

strate that SSDA significantly improves performance

while UDA improves performance by less amount. The

F1-score rises from 0.443 to 0.822 after utilizing SSDA

(shown in Figure 9(a)) with training samples from a

sunny environment and testing samples from a night

environment. It is applicable to other cross-ambience

situations as well.

3) Impact of Cross-Height: In the cross-ambience study, we

find that the performance of the model is severely affected due

to the heterogeneity of the data distribution caused by different

ambiences. In this study, we aim to investigate the performance

of the model when using similar ambience data samples that

have been collected from different heights for training and

testing purposes. Table II represents the experimental findings.

Key Takeaways:
• Similar to cross-ambience, cross-height also yields sub-

optimal results. We observe a similar pattern for the

cross-height and cross-ambience settings used in model

training and testing. Table II demonstrates that SSDA

significantly improves performance while UDA improves

performance by less amount. The F1-score rises from

0.238 to 0.834 (SSDA 10%) and 0.878 (SSDA 20%)

(shown in Table II) with training and testing samples

from the sunny environment but at different heights. It

is applicable to other cases also.

TABLE II: Performance of different deep learning models

under the same ambience, for different heights.

Training
environment

Testing
environment

F1-score (FCL) F1-score (CNN)
F1-score
(UDA)

F1-score
(SSDA 10%)

F1-score
(SSDA 20%)

Sunny(53) Sunny(7) 0.158 0.238 0.312 0.834 0.878

Night(53) Night(7) 0.346 0.217 0.250 0.531 0.799

Lablight(53) Lablight(7) 0.262 0.329 0.371 0.495 0.587

Sunny(7) Sunny(53) 0.107 0.193 0.342 0.645 0.909

Night(7) Night(53) 0.198 0.296 0.410 0.537 0.588

Lablight(7) Lablight(53) 0.276 0.301 0.380 0.437 0.488

Sunny(53) indicates taking the samples from a sunny environment where the distance is 53 inches.

B. When MMW radar is dynamic

1) Impact of Ambience: We consider recognizing objects in

three different environments while keeping the distance fixed.

We consider taking training and testing samples from the same

environment at a fixed distance. The findings are represented

in Figure 10(a) and Figure 10(b). For 42 inches and 84 inches
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of the MMW radar, the recognition performance of the FCL

and CNN is above 92% when the radar is static or dynamic.

Key Takeaways:
• A lablight environment (indoor) provides better recog-

nition performance than an outdoor environment (lab

environment with light and without light) when we use a

FCL for a distance of 42 inches. When we apply CNN,

the F1-scores are close in all environments. It is expected,

as CNN is more powerful than FCL.

• When using FCL for a distance of 84 inches, the F1-

score is unsatisfactory. However, the F1-score is better

in sunny environments compared to other conditions. By

using CNN for a distance of 84 inches, complex features

can be learned and the F1-score improves from 0.754 to

0.873 in a lablight environment, as shown in Figure 10(b).

This improvement applies to other cases because radar

struggles to capture sufficient information in dynamic

states.

2) Impact of Cross-Ambience: Here, we test how data from

various settings might be used to draw conclusions. This study

uses the same dataset and distance for both training and testing

as the previous one, but differs in that the surroundings are

significantly changed. Take into account two 42-inch data

sets, one from a sunny setting and the other from a lablight

setting. Data that has been collected in a sunny environment

is used to train the model, which is then put to the test under

artificial lighting. Figure 10(a) and Figure 10(b) are showing

the experimental findings.

Key Takeaways:
• Significant performance losses occur when the environ-

ments of the training and testing datasets are different.

Figure 10(a) and Figure 10(b) show the performance of

the deep learning models. It’s to be anticipated since the

distribution of data varies depending on the environment,

although the distance is the same. We have used UDA

and SSDA methods with 10% and 20% labeled data from

the target domain to solve this problem. Figure 10(a) and

Figure 10(b) illustrate that SSDA leads to a substantial

improvement in performance, whereas UDA results in a

comparatively smaller improvement. The F1-score rises

from 0.691 to 0.898 (shown in Figure 10(a)) after utiliz-

ing SSDA with training samples from a night environ-

ment and testing samples from a lablight environment. It

is applicable to other cross-ambience situations as well.

3) Impact of Cross-Distance: We have observed a signif-

icant decrease in performance due to the existence of data

distribution heterogeneity caused by different environments.

Here, we investigate what happens to the model’s F1-score

when training and testing data samples have the same ambient

conditions but are collected from different distances. Table III

represents the experimental findings.

Key Takeaways:
• Similarly to cross-ambience, cross-distance leads to sub-

optimal outcomes. We see a similar tendency for cross-

distance and cross-ambience training and testing condi-

tions. When we apply UDA and SSDA, the performance

ameliorates. The F1-score rises from 0.521 to 0.768

(shown in Table III) for the night environment. Here,

training samples are taken from 84 inches, but testing

samples are taken from 42 inches. Now, in the following

section, we describe how far our future research plans

have progressed.

TABLE III: Performance of different deep learning models

under cross distances for the same ambience settings.

Training
environment

Testing
environment

F1-score (FCL) F1-score (CNN)
F1-score
(UDA)

F1-score
(SSDA 10%)

F1-score
(SSDA 20%)

Sunny(84) Sunny(42) 0.492 0.514 0.494 0.542 0.670

Night(84) Night(42) 0.571 0.521 0.583 0.702 0.768

Lablight(84) Lablight(42) 0.460 0.491 0.512 0.603 0.644

Sunny(42) Sunny(84) 0.405 0.457 0.461 0.500 0.570

Night(42) Night(84) 0.466 0.526 0.543 0.563 0.631

Lablight(42) Lablight(84) 0.411 0.422 0.445 0.518 0.532

Sunny(42) indicates taking the samples from a sunny environment where the distance is 42 inches.

VI. DISCUSSION

We address the issues of developing and implementing a

deep learning model that utilizes MMW radar. These include

potential noise in the dataset, challenges in real-time im-

plementation with point cloud radar data, and the system’s

potential impact on daily life.

• During the data collection process, surrounding objects

can potentially introduce noise into the dataset. Although

such objects may be considered noise, we believe that our

model is robust enough to recognize actual objects in the

presence of noise. However, in the future, we may be able

to improve the performance of our model by reducing the

noise introduced by these surrounding objects.

• Integrating the object recognition pipeline into a real-

time system can be straightforward, but there are various

implementation challenges to consider, such as power

consumption and noise detection from surrounding ob-

jects. These challenges present concrete obstacles to

achieving real-time implementation.

• Our deep learning methodology has exclusively utilized

the processed sparse point cloud data generated from the

MMW radar. If we incorporate divergent types of MMW

radar data, it could lead to processing and computational

difficulties, potentially requiring significant alterations to

the hyper-parameters of our model.

• The potential use of MMW radar technology to recognize

both familiar and unfamiliar objects, activities, and health

issues concurrently may have a profound influence on

daily life. Given the limitations on camera placement

due to privacy concerns, radar may serve as an excellent

substitute for identifying criminal or other daily activities.

We are nearing the conclusion of our investigations, where

we summarize our current constraints and future research

scopes.

VII. CONCLUSION

Our study has shown promising results for static object

recognition using MMW radar. We have evaluated the per-

formance of our proposed model under various conditions

and found that it performs well on data with a homogenous
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ambiance but poorly on data with a heterogeneous ambiance.

To address this issue, we have introduced domain adaptation

techniques to improve accuracy. However, our current model

only focuses on recognizing static objects, and to address

real-world applications, we need to develop more advanced

techniques for recognizing known or unknown objects, activ-

ities, and health issues simultaneously. This technology has

diverse practical applications, especially in areas where privacy

issues constrain the deployment of cameras, such as security,

surveillance, and monitoring.
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