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Abstract—Simulated environments can be a quicker and more
flexible alternative to training and testing machine learning
models in the real world. Models also need to be able to efficiently
communicate with the environment. In military-relevant environ-
ments, a trained model can play a valuable role in finding cover
for an autonomous robot to prevent getting detected or attacked
by adversaries. In this regard, we present a forest simulation
and robot control framework that is ready for integration with
machine learning or object recognition algorithms. Our frame-
work includes an environment relevant to military situations and
is capable of providing information about the environment to a
machine learning model. A forest environment was designed with
wooded areas, open paths, water, and bridges. A Clearpath Husky
robot is simulated in the environment using Army Research
Laboratory’s (ARL) Unity and ROS simulation framework. The
Husky robot is equipped with a camera and lidar sensor. Data
from these sensors can be read through ROS topics and RViz
configuration windows. The robot can be moved using ROS
velocity command topics. These communication methods can be
employed by a machine learning algorithm for use in detecting
trees to attain maximum cover. Our designed environment
improves upon the default ARL framework environments by
offering a more diverse terrain and more opportunities for cover.
This makes the environment more relevant to a cover-seeking
machine learning model. Code, videos, and integration process
available at : https://github.com/avispector7/Forest-Simulation

Index Terms—ROS, rospy, Unity, semantic segmentation, ob-
ject detection, Husky, ARL framework

I. INTRODUCTION

It is not always practical to train and test machine learning
models in real-world environments. This can especially be
true when machine learning is used for robotics. Simulated
environments can be a quicker and more flexible alternative,
provided they are realistic and relevant to the machine learning
model’s purpose. This means they need to accurately represent
the real-world environment they are attempting to replicate
so that the transition from the simulated environment to the
real world can be as seamless as possible. They also need
to provide a diverse dataset for any potential conditions the
model may encounter or tasks the model needs to accomplish.

Robot controllers, sensors, and other robot components
are not usually integrated within a machine learning model,

Fig. 1. Husky robot simulated in our environment using the ARL framework.

as this could make the model far too large and complex.
Therefore, it is important to find the best methods for a
machine learning model to communicate with an autonomous
robot in an environment. This includes to receive information
about the environment through sensors and to command and
move the robot. These efficient methods are necessary for
communication to be as seamless as possible.

In military-relevant environments, autonomous ground ve-
hicles often need to find cover to prevent getting detected or
attacked by adversaries. A trained machine learning model
can help find this cover after receiving information about the
environment. One option is to detect trees as sources of cover.

We present a framework that attempts to address all of these
problems. The key contributions of our framework include:

1) We designed a realistic forest environment that includes
diverse terrain and extensive areas of cover. The diverse
terrain includes grass, an open hiking path, water, and
many hills. The cover is provided by trees. The diverse
terrain and areas of cover are included to make the



environment relevant to a machine learning model that
detects sources of cover from adversaries in a military
situation.

2) We used the Army Research Laboratory’s (ARL) frame-
work to simulate a robot in our environment and find
efficient communication methods. The ARL framework
integrates environment and robot simulation with Robot
Operating System (ROS) for robot control, sensor read-
ing, and more. We determined the best method for sensor
reading was through ROS Visualization (RViz) windows
that converted the sensor data into an easily visualized
format. We determined the best method for robot control
was through ROS velocity command topics, and we
created a Python script to do so more easily. These
communication methods allow for a machine learning
algorithm to more easily receive data about our envi-
ronment and move the robot based on its computations.

3) Our framework is designed to be easily integrated with
a machine learning model that detects trees as sources
of cover in a military-relevant environment. This is
made possible through our military-relevant simulated
environment and our methods of communication.

II. BACKGROUND INFORMATION

A. Robot Operating System (ROS)

Robot Operating System (ROS) [1] is a set of software
frameworks for making robot software. It is used in this project
to design a robot, configure the robot’s joints and how to
drive/control it, and to communicate with the robot. ROS is
made up of packages, nodes, topics, messages, and services.
Services are not used in this project.

Packages are groups of ROS files, nodes, messages, etc.
with a similar purpose. Nodes are processes running in ROS
that are able to publish and subscribe to topics to send
and receive messages. Topics are containers of information.
Some publish information to subscribers, like camera and
sensor data or positions. Some are open to receive information
from publishers, like controllers. Some are able to do both.
Messages are the definition or format of the information that
is passed between nodes and topics. Services are client/server

Fig. 2. Diagram of ROS and its parts. [3]

Fig. 3. Diagram of ROS/Unity integration.

systems made up of requests and responses for communicating
actions between nodes.

One specific package used in this project is rospy, which
is a package for using Python scripts to interact with ROS. It
includes functions for creation of nodes, and publishers and
subscribers to ROS topics.

B. Unity

Unity [2] is a software used for game creation and inter-
active simulation in 2D and 3D. It is used in this project to
design the environment.

The files in Unity projects are called assets. Models are
predesigned objects. Prefabs are templates for models and
objects. Materials add colors, patterns, etc. to models, prefabs,
and objects. Shaders control how materials appear. Textures
are patterns for surfaces for objects like terrains and planes.
Scripts can be attached to objects and have many different
purposes, including user control. These are all different types
of assets. There are many more types of assets, but these are
the primary types used when making a project.

ROS/Unity integration allows users to control environments
in Unity as well as objects that are connected to ROS and are
simulated within Unity, like simulated robots. It works through
scripts in Unity that create ROS nodes specifically for Unity.
These nodes hold and publish information about the simulated
world and are able to receive information from other ROS
nodes. They can also be used for communication with ROS
nodes for simulated robots within the environment, as well as
for publishing information about the simulated robot, like its
position within the world. Fig. 3 shows a visual representation
of the integration process and how ROS and Unity interact.

C. Semantic Segmentation and Object Detection

Semantic segmentation and object detection are two impor-
tant and fast-growing parts of machine learning.

Semantic segmentation is dividing images by pixel into
various distinct object classes, such as ground, building, sky,
etc. It is most commonly used for autonomous driving. Terrain
segmentation is a type of semantic segmentation used for
classifying different types of terrains. This can be useful to
distinguish between, for example, an paved path that is easy
to walk on and uneven ground.

Object detection is identifying distinct instances of objects
of certain classes within an image, such as humans, animals,



Fig. 4. Terrain segmentation e.g. [16] Fig. 5. Object detection e.g. [15]

furniture, cars, etc. It is also used for autonomous driving, as
well as for surveillance.

D. Clearpath Husky

A Husky robot is an unmanned ground vehicle (UGV)
designed by Clearpath Robotics. Clearpath makes robots de-
signed for research and industry. The Husky robot is built for
easy integration with different kinds of sensors. It is designed
to be able to travel on multiple different terrains.

III. RELATED WORK

A. Visually Realistic Multi-robot Simulation

The capabilities of game engines have been utilized to the
benefit of the computer vision community in order to con-
struct frameworks that are applicable in scientific applications
where testing and evaluation of vision-based algorithms for
detection, tracking, and navigation could be accomplished
more effectively with inputs from several kinds of sensors
and conditions of the environment. Ganoni and Mukundan
[5] introduced a generic framework for simulating a fleet of
robots or drones operating in a synthetic model of the natural
world. The suggested simulation architecture makes use of the
Unreal Engine4 to generate optical and depth sensor outputs
at any location and in any direction inside the simulation
environment.

B. Simulation for Agricultural Robotics

Because agricultural robots are complex systems, efficient
task execution in contexts with unstructured crops and plants
necessitates multidisciplinary collaborations between many
study group. The design and development of agricultural
robots could be sped up with the help of simulation software
and virtual environments which can offer a cost-effective and
trustworthy framework for experimenting with various sensing
and acting mechanisms in order to confirm the performance ca-
pabilities of the robot in dynamic settings. Shamshiri,Hameed
et. al. [6] provides a comprehensive overview of the various
professional simulators and custom-built virtual environments
that have been put to use in agricultural robotics.

C. ARL Unity and ROS Simulation Framework

This framework was designed by members of the Tactical
Behaviors for Autonomous Maneuver Collaborative Research
Program (TBAM-CRP) as part of the Army Research Labora-
tory’s US Army Combat Capabilities Development Command.
The framework includes multiple Unity environments: an
outdoor nature/park area, a city, a basic plane with obstacles,
and an outdoor storage facility area. It has the capability to
simulate multiple different robots, including Husky. It has
a package for full ROS integration, which can be used for
loading environments, spawning robots in the environments,
configuring and using sensors, and controlling the robots
and environments. It also includes configuration for multiple
different kinds of sensors, including inertial measurement
unit (IMU) data, which reports forces, orientation, and more;
a camera with RGB image, semantic segmentation, object
detection, and depth capabilities; and a lidar sensor. [12]

The ARL framework was used as a primary backbone of this
project. It was used to simulate a Husky robot in our designed
environment and to communicate with our environment and
the Husky robot through ROS.

With our framework, we aimed to improve upon the ARL
framework and tailor it more towards our project’s purposes
and goals. In order for our framework to be military-relevant,
it was important for the simulated environment to include
extensive areas of cover so a machine learning model could
be trained to find maximum cover from adversaries. It was
also important for the simulated environment to have a diverse
terrain with both potential unsafe hills and easily navigable
areas so a machine learning model could be trained to find
the safest path for a small autonomous robot. While the ARL
framework includes many excellent environments, we did not
feel that any of them met our desired qualities to be military-
relevant. Therefore, we decided to design our own environment
with these qualities in mind to ensure we could appropriately
train a military-relevant machine learning model.

The ARL framework also provides several methods of com-
munication with a simulated robot through its ROS integration.
We wanted to find the most efficient and straightforward of
those methods in order to make integration with a machine
learning model as seamless as possible.

D. GA-Nav Terrain Segmentation

GA-Nav: Efficient Terrain Segmentation for Robot Navi-
gation in Unstructured Outdoor Environments is a terrain
segmentation algorithm created by Guan et. al. It is used
for autonomous navigation. It is a semantic segmentation
algorithm that is focused on classifying terrain based on its
navigability. It includes classes such as smooth, rough, bumpy,
and non-navigable. The classification is used to create a safe
navigation path for a UGV [18].

The GA-Nav algorithm was used as a basis for the final
part of this project – implementing a semantic segmentation
or object detection algorithm to use for tree detection to obtain
maximum cover. We considered their methods when deciding
how we would like to implement our own algorithm. We



resolved that their terrain segmentation algorithm could be
used to differentiate between open paths, water, and grassy,
covered areas in our environment.

E. Semantic Mapping

Real-time Semantic Mapping for Autonomous Off-Road
Navigation is a semantic mapping algorithm designed by
Maturana et. al. It is used for autonomous navigation for off-
road all-terrain vehicles (ATVs). A semantic map is a model
of the vehicle’s surroundings that includes both semantic data
and geometric data, including height, size, texture, and more.
The algorithm combines semantic segmentation on image data
with lidar point cloud data to create a semantic map, which is
then used to create a safe navigation path for an ATV [8].

We considered the methods of this semantic mapping algo-
rithm in addition to the GA-Nav algorithm for the final part
of our project. We theorized that we could use the GA-Nav
algorithm to classify the terrain, and we could use semantic
mapping to identify sources of cover. We hypothesized that, by
combining these two methods, we could create an algorithm
for obtaining maximum cover in our environment.

IV. METHODS

The goal of our project was to create a framework for sim-
ulating autonomous robots in military-relevant environments
and communicating with those robots. The purpose of the
framework was to be integrated with a machine learning model
and assist in the training and implementation of that model.
Our framework was more specifically designed for a model
that seeks to obtain maximum cover to avoid being detected
or attacked by adversaries in a military situation.

The first step in creating our framework was designing
a realistic, military-relevant forest environment using Unity.
There were two important parts to consider during the design
process. First, it was important for the environment to have
diverse terrain so that a machine learning model could ad-
equately learn to find the safest and most navigable terrain
for an autonomous ground vehicle. Second, the environment
needed to include plenty of areas of cover, in this case trees.

The next step was to simulate an autonomous robot in an
environment and determine the best method of communicating
with the robot while it was in the environment. We decided to
use the ARL Unity ROS simulation framework to do so and
take advantage of the available premade environments, access
to simulated robots, and full ROS integration. We used the
framework to determine the quickest and easiest method of
controlling the robot in the environment, what sensors would
be most useful, and how to read from those sensors.

After determining the best communication methods, we had
to add our designed environment to the ARL framework,
simulate a Husky robot in our environment, and apply the
methods in our environment.

Finally, we attempted to use our environment and methods
of communication to implement a machine learning algorithm.
We determined the best method of finding maximum cover
in a military-relevant environment would be to detect trees as

sources of cover. We concluded the best way to do so would be
using a semantic segmentation or object detection algorithm.

V. DATA AND RESULTS

A. Designing the Environment

The first step in creating our framework was to design the
forest environment in Unity [19]. To do so, we first created
a terrain object and sculpted the height of the terrain with
Unity’s terrain tool to be that of a forest with many hills and
a creek running through it. We then painted the texture of the
terrain using the terrain tool with different kinds of grass, an
open hiking path, and water for the creek and a large lake
using terrain texture assets [4] [14].

The purpose of the hills and different terrain textures are to
have a diverse terrain to train a machine learning model. In the
real world, it is common to encounter various kinds of terrain,
many of which may be non-navigable for an autonomous
robot. It is also common to encounter hills, some of which
may be too steep for a small robot. By providing a diverse
terrain, a machine learning model can be trained to find a
path that is safe and can be easily navigated.

Next, we added trees densely throughout the entire terrain.
We used a Unity asset that included four kinds of conifer
trees of varying height, diameter, and leaf density [9]. We
used Unity’s terrain tool to automatically place trees, randomly
selecting amongst the four, throughout the entire environment.
Density is configured by inputting the number of trees for the
tool to place. We inputted a large number to make sure the
terrain was densely covered. We then used the terrain tool to
manually add trees in certain places to account for less dense
areas the automatic process may not have covered, and we
removed the trees in the paths and water.

In our environment, trees function as the main source of
cover. It was important when designing the environment to
include both highly covered areas and open areas. This allows
for a cover-seeking machine learning model to learn to find
cover from an open area in addition to learning how to
maintain maximum cover. For example, if the autonomous

Fig. 6. Overview of designed environment.



Fig. 7. Close-up of paths, trees, and bridges in designed environment.

robot is in an open area, such as on a hiking path, the model
can learn to find and move towards the nearest trees. Finally,
we added bridges from the paths over the creeks and water
using a bridges object asset [13].

Compare Figs. 1, 7, and 10, which show our designed
environment, with Fig. 8, which shows the ARL framework’s
default environment. The differences between these two envi-
ronments illustrate why we felt it was necessary to design our
own environment. The ARL framework’s default environment
does have some trees, but we felt that it was not enough to
provide sufficient cover for an autonomous robot and to train a
tree detection algorithm. Because of this, we decided to design
our own environment with much more trees and cover.

B. Finding a Communication Method

The next step was to find an efficient method of commu-
nication with a simulated Husky robot. We used the ARL
framework’s default environments to do so. We installed the
framework and simulated a Husky robot in their default
environment, shown in Fig. 8.

We then used their premade environments to investigate how
to read from the sensors, and how to control and move the
robot. For the sensors, we had configured the Husky robot
with an RGB camera with semantic segmentation and object
detection capabilities and a lidar sensor. We found that those
sensors could be read through an RViz (ROS Visualization)
configuration window. These windows communicate directly
with the ROS topics that are publishing the camera and
lidar sensor data and converts their messages into an easily
visualized format, shown in Fig. 9.

For robot control and movement, the Husky robot is
configured with a controller that can be used in the RViz
window. The robot can also be controlled by publishing to
the Husky velocity command topic. This method uses a ROS
topic publishing command and publishes a linear and angular
velocity, each with x-, y-, and z-components.

We concluded that using publisher commands would be the
best method for controlling the robot and using RViz windows
would be the best way to read sensor data.

Fig. 8. Husky robot simulated in default ARL environment.

C. Applying Communication Methods in Our Environment

After learning and deciding upon an efficient communi-
cation method, we applied those methods to our designed
environment. First, we had to add our designed environment
to the ARL framework. To do this, we downloaded ARL’s
original Unity project where the creators made the simulation
interface and designed all of the default environments. We then
exported our Unity project’s assets and saved them in the ARL
framework’s ROS workspace. Finally, we created a launch file
configured specifically for our environment and loaded it in the
ARL framework through their Unity project, shown in Fig. 10.

Once we had loaded our environment in the ARL frame-
work, we simulated a Husky robot in our environment and
applied the communication methods. We used the ROS topic
publisher command to move the robot around, and we used
RViz to read the sensor data. As hoped, the methods worked
as efficiently as they had in the default ARL environments. We
also created a Python script using rospy to control the robot.
The script creates its own ROS node, creates a publisher, and
publishes to the same ROS topics as the ROS command. We
created the script to make control more intuitive and to provide

Fig. 9. RViz configuration window with camera image and lidar sensor data.



Fig. 10. Husky robot simulated in designed environment.

easy integration with a machine learning algorithm.

VI. CONCLUSION

We created a framework for simulating an autonomous robot
in a military-relevant environment and communicating with
that robot. Our framework is ready for integration with a
machine learning model that seeks to obtain maximum cover
through tree detection.

We designed a forest environment in Unity that provides a
diverse terrain and both open and highly covered areas. The
environment is designed to provide cover for an autonomous
robot from adversaries in a military situation. We used the
ARL Unity ROS simulation framework to simulate a Husky
robot and find methods of communicating with the robot and
getting environment data through a camera and lidar sensor.
We determined ROS topic publisher commands were the most
effective method of robot control and RViz configuration win-
dows were the most effective method of reading sensor data.
We added our designed environment to the ARL framework,
simulated a Husky robot in our environment, and applied
the communication methods with creating a Python script to
control the robot more easily through rospy.

In the future, we would like to successfully implement a
machine learning algorithm and determine a method of find-
ing tree cover for use in military-relevant environments. We
propose a solution that combines semantic segmentation and
object detection. We propose applying semantic segmentation
on our image data to classify the different types of terrain
in our environment, as well as classify objects such as trees,
bridges, and any other obstacles. We propose applying object
detection on our image data, with use of data from the LiDAR
sensor if necessary, to more concretely identify where the
trees are. In order to obtain maximum cover, we propose
using the semantic segmentation algorithm to find the general
location and direction of nearby trees so a machine learning
model could rotate an autonomous robot towards the trees. We
then propose using the object detection algorithm to find the
distance to the nearest tree so a machine learning model could
move the robot to a set distance from the tree.

Once a tree detection algorithm is implemented, we plan to
combine this framework with a reinforcement learning (RL)
algorithm [17]. RL is a type of machine learning that trains
models based on positive or negative rewards for each action.
The RL algorithm we aim to combine with our framework
is used for trajectory planning in unstructured outdoor envi-
ronments. It identifies trajectories that have the most cover
while remaining navigable and low-cost, meaning there are not
too many elevation changes and hills, ensuring the robot can
stay less visible. The RL algorithm can be combined with the
tree detection algorithm to obtain maximum cover. Both can
be tested in our environment using the developed simulated
framework.
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