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such as coughing which plays a huge role in spreading the
COVID-19 virus.

Fig. 1. Respiratory symptoms data collection by the eSense earable with
the captured signals transmitted to a Bluetooth-connected smartphone. The
accumulated data is processed offline to detect the respiratory symptoms and
evaluate domain adaptation feasibility.

The devastating effect of COVID-19 across the globe has
motivated us to investigate the application of such devices in
detecting respiratory symptoms such as coughing, sore throat,
and sneezing, as these symptoms are identified as COVID-
19 symptoms by the World Health Organization. However,
even though in literature, detection of these symptoms is
well-explored [4]–[6], the majority of these approaches pose
inherent limitations in terms of user-convenience, portability,
device-placement-induced noise in data collection, and opera-
tion environment. In this context, the eSense earable prototype
obviates these problems, but the feasibility of such devices
in detecting the mentioned symptoms is unknown. As the
feasibility with earables has not been well-studied there is
no pre-existing dataset that can be easily experimented with.
On the other hand, the data collection process poses two
major challenges: 1) due to the sensitivity of the COVID-
19 pandemic, it is impractical to manually collect voluntary
coughing data from a large number of participants, and 2) the
crowd-sourcing-based voluntary data collection process incurs
logistic challenges over the required procedures and the setup.

In addition to the feasibility study, we also attempted to
improve the model performance when the model is exposed
to the unseen data sample through the application of domain
adaptation techniques - a transfer learning technique primarily

Abstract—The COVID-19 pandemic has brought a devastating 
impact on human health across the globe, and people are still 
observing face-masking as a preventive measure to contain the 
spread of COVID-19. Coughing is one of the major transmission 
mediums of COVID-19, and early cough detection could play a 
significant r ole i n p reventing t he s pread o f t his life-threatening 
virus. Many approaches have been proposed for developing 
systems to detect coughing and other respiratory symptoms in 
literature, but earable devices are not well-studied and investi-
gated for respiratory symptom detection. In this work, we posited 
an acoustic research prototype (earable device) - eSense that 
has acoustic and IMU sensors embedded into user-convenient 
earbuds to address the following issues: (i) feasibility of the 
earables in detecting respiratory symptoms, and (ii) scalability 
of trained machine learning models in the presence of unseen 
data samples. We performed experimentation with both shallow 
and deep learning models on the eSense collected data samples. 
We observed that the deep learning model outperforms the 
shallow learning models achieving 97% accuracy. Furthermore, 
we investigated the scalability of the deep learning model on 
unseen datasets and noticed that the performance of the deep 
learning model deteriorates when trained on a particular dataset 
and tested on an unseen dataset. To mitigate such challenges, we 
postulated an adversarial domain adaptation technique that helps 
improve the performance of our respiratory symptoms detection 
framework by a substantial margin.

Index Terms—Domain Adaptation, eSense, COVID-19, Respi-
ratory Symptoms, Earables, Smart Health

I. INTRODUCTION

Internet of Things (IoT) advancement has created a wide-
range innovation of smart devices enhancing human capability
in developing tools towards smart cities, smart homes, energy
expenditure monitoring, fitness t racking, a nd s mart health
applications. Earable devices are the recent addition of IoT
technologies that enhances earbud capability to interact and
respond with the surrounding environment through various
sensor functionalities and empower the end-user with various
applications. Such smart earbuds hold the benefits o f porta-
bility, user-friendliness, and unobtrusiveness which helps to
obviate unrealistic assumptions of device-use scenario. eSense
is such an earable device, which is composed of acoustic, IMU,
and BLE sensors [1]. Several literature works have studied its
feasibility on smart health applications [2], [3] but till now
it has not been studied for detecting respiratory symptoms,
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used to find out the labels of an unlabeled dataset with the help
of an existing labeled dataset. In general, the data distributions
of different datasets are different even if the intended task
is similar. Such data distribution heterogeneity occurs mainly
due to the on-body device placement variations, the difference
in the device sampling frequency, end-user sensitivity in the
performed activities, and activity execution habits and patterns.
More about the domain adaptation is covered in section II.
Overall, in an effort to find out the answers on the earable
device feasibility on respiratory symptom detection and to
appease the model scalability issue, the followings are the
primary contributions of this proposed work-

1) Respiratory Symptom Detection Feasibility Study
Using eSense We collected a voluntary respiratory
symptom dataset from 4 participants for our feasibility
study as depicted in Figure 1 and evaluated the symptom
detection performance under various machine learning
models (under the best performance settings). We col-
lected voluntary coughing, sore throat, and sneezing data
in the collected dataset. Our study reveals the deep
learning model efficiency over the traditional machine
learning models for earable data processing.

2) Model Scalability Through Domain Adaptation Tech-
nique to Mitigate Performance Degradation The lack
of publicly available datasets leads us to explore the
application of domain adaptation techniques on earable
data. In general, the data distribution heterogeneity of
different datasets causes performance degradation even
if the intended dataset use cases are similar. We in-
vestigated such performance degradation and applied a
domain adaptation technique to mitigate the degradation.
We crawled a publicly available dataset and utilized it in
our domain adaptation study.

The paper is organized as follows. In section II we discuss
the recent works on the eSense earable, acoustic cough detec-
tion, and domain adaptation techniques. Section III presents
our proposed domain adaptation deep learning architecture.
We articulate our collected datasets, data preprocessing, ab-
lation study, and the experiments in section III. We discuss
the experiments, findings, and implementation aspects in sec-
tions IV, V, and VI respectively. Finally, we conclude our
study in section VII.

II. RELATED WORK

Respiratory Symptom Detection Several systems have
been proposed and developed for respiratory symptom de-
tection from acoustic signals [4], [7]. [7] proposes a real-
time low-power wireless respiratory monitoring system to
measure the breathing rate and coughing frequency. [4] have
developed a wireless sensing system capable of detecting
voluntary coughs, sneezes, and face touching that uses radio
frequency technology. A deep learning-based approach is pro-
posed by [5] that employs wearable acoustic sensors for cough
detection. [8] have evaluated various hand-crafted acoustic
features such as SIFT, MFCC, MFB for cough detection using
deep architectures and found that treating the cough signals as

a single input feature instead of multiple shorter features pro-
vides better performance. These approaches offer innovative
solutions and insights but incur several drawbacks in terms of
the system requirement [4], [7], user-friendliness [7], on-body
placement requirement [7], and practicality issues [9] where
many of such limitations are obviated by an earable smart
device like eSense [1] that does not require an expensive
setup which resolves the mentioned issues.

eSense Literature Work Recently, many health-related
applications have been explored using eSense earables. [10]
have examined a case study of acoustical manipulation in a
blindfold walking scenario on both subtle and overt condi-
tions. [2] finds the effectiveness of the embedded inertial
measurement units (IMUs) inside earphones that offer a clear
advantage in step counting. [3] proposes a system for sensing
respiratory rates using in-ear headphone (eSense ) inertial mea-
surement units (IMU) that obviates specialized equipment for
the same purpose. Our study leverages the eSense earable and
compliments the traditional coughing as well as respiratory
symptom detection research findings.

Domain Adaptation Domain adaptation is a transfer learn-
ing approach that aims to label the unlabeled data source with
the help of an existing labeled data source. It is assumed that
the intended task (classification/regression) using the labeled
and unlabeled data sources are the same. In general, there
are a few approaches to achieving domain adaptation, and
learning the generalized feature space of both datasets is
one of them. For more details, we refer the readers to the
existing literature work on domain adaptation [11], [12] for
detailed definitions, methodologies, techniques. RevGrad [13]
proposes an adversarial-based domain adaptation mechanism
to extract the generalized features between different data
sources for a similar classification task. The challenge we have
faced at the beginning of our study with the limited labeled
data samples prompted us to explore the domain adaptation
approach, more specifically RevGrad [13], to improve our
model scalability. Along with the earable feasibility study for
respiratory symptom detection, we also evaluated the scope
for domain adaptation by:

• Training the deep model using our collected dataset and
following by testing on the publicly available coughing
dataset (performance degrades)

• Improving the performance by integrating a similar adver-
sarial mechanism as the one proposed by RevGrad [13]

In the next section, we describe our proposed deep model
with the integrated domain adaptation module.

III. METHODOLOGY

Our overall methodology is two folds - firstly, we experi-
mented with several traditional machine learning models and
a CNN-based deep model to investigate the feasibility of
earables in respiratory symptom detection. In the second fold,
we take inspiration from RevGrad [13] and adopt a domain
adaptation mechanism to increase our deep learning-based
model scalability. We describe the traditional machine learning
model settings and different experiments in sub-section IV-C.
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Fig. 2. Overall process of respiratory symptom detection. The acoustic signal is processed into a Mel-spectrogram image. The convolutional neural network
is used for feature extraction and a fully connected layer is used for inferencing the symptoms.

In this section, we elaborate on the deep learning network
architecture and the adversarial training mechanism.

A. Architecture

The overall deep learning framework is depicted in Figure 2
can be split into three modules - feature extraction (green
color), symptom recognizer (orange color), and domain dis-
criminator (maroon color). The feature extraction module con-
sists of 3 layers of convolutional neural network (CNN), Recti-
fied Linear Unit (ReLU), and Max-pooling layers, whereas the
inference module consists of 2 fully connected layers. Finally,
the domain adaptation module is similar to the inference
module but differs in the final layer output count. Details of
the architecture settings are tabulated in Table I.

TABLE I
ARCHITECTURE HYPER-PARAMETERS

Hyper-parameters Values

Convolution Filter No. 64, 128, 256
Convolution Filter Dimension 9x9, 7x7, 3x3
Max Pooling Filter, Stride 2x2, 2
No. of Units in Inference Module 128, 3
No. of Units in Domain Adaptation Module 128, 1

B. Training Mechanism

Initially, we have used the feature extractor and symptom
recognizer for the initial feasibility study. Using our labeled
collected dataset, we train the network in a supervised manner
using a batchwise categorical cross-entropy loss function as
described in Equation 1

Lcce = −
C∑
i=1

tilog(pi) (1)

where C is the total number of classes (respiratory symp-
toms), ti is the ground truth and pi is the softmax probability
of the symptom recognizer.

We extend our deep learning model for symptom detection
for the domain adaptation purpose to improve the model

scalability. The trained model in the previous state are further
leveraged and adopted for the adaptation phase. During the
domain adaptation phase, the deep learning architecture is
extended through integrating a domain discriminator (maroon
color in Figure 2). The domain discriminator operates in an
adversarial manner where it receives the feature from both
the labeled and unlabeled datasets. The domain discriminator
attempts to predict the source originality of the incoming
features whereas the feature extractor operates to negate this
goal. We refer to the labeled dataset as the source dataset
and the public dataset as the target dataset where the label
is assumed to be unavailable. During the adaptation process,
feature extractor and domain discriminator are used for both
the labeled and unlabeled data samples whereas the symptom
recognizer is used only for the labeled data samples. In this
work, we have adopted the gradient reversal layer implemen-
tation (Equation 4, 5, 6) from the RevGrad [13] work.

IV. EXPERIMENTS

In our symptom detection feasibility study, we employ 4
traditional machine learning models (random forest, decision
tree, support vector machine, and multi-linear perceptrons),
and a deep learning model. The deep learning model is further
extended with the inclusion of a domain discriminator for the
domain adaptation feasibility study. We will describe vari-
ous experimental steps involved with these models including
dataset, pre-processing, implementation details, experiment
design, and findings throughout our experiments in detail.

A. Dataset

In-House Dataset: We collect voluntary data from 4 partic-
ipants for three respiratory symptoms (coughing, sore throat,
sneezing) in the home environment. All of the participants
are male and graduate students aged between 23-30 years old.
We collect the data in segments and instruct the participants
to provide 5 seconds of data so as not to cause any health
issues. We collect 15 seconds of data for each symptom from
each participant. We leverage an android app1 that facilitates a

1https://www.esense.io/
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connection with eSense and collects respiratory symptom data
in the android device storage. The participants are allowed to
follow their natural pattern while expressing symptoms and
precautionary COVID-19 measures are followed during the
whole data collection process. The data distribution of our in-
house dataset is shown in Figure 3.

Virufy COVID-19 Open Cough Dataset: The lack of suffi-
cient data in our in-house dataset creates additional challenges
and motivates us to investigate and apply domain adaptation
techniques. We have found one publicly available crowd-
sourced coughing dataset that contains COVID-19 audio sam-
ples from 16 patients and the corresponding PCR test status.
As a crowd-sourced dataset, the dataset is diverse in terms of
country of origin, gender, age, and medical history which is
perfectly suitable for the domain adaptation study. More details
about the dataset can be found in the GitHub repository 2

B. Dataset Preprocessing and Implementation Details

We use librosa [14] and python speech features [15] library
for acoustic signal preprocessing. The deep-learning archi-
tecture is implemented using the open-source PyTorch [16]
library. Statistical features similar to [17] are extracted for the
traditional machine learning models using the python-based
library - tsfresh [18]. In our experiments, we have used the
python package scikit-learn [19] to implement the machine
learning algorithms.

Acoustic data processing steps involve segmenting the
acoustic data and generating Mel-spectrograms as the input
for the deep model. We split the audio signals into non-
overlapping segments of various lengths ( 0.5 sec, 1 sec).
To avoid an extra data preprocessing step, silent sections
are not removed from the acoustic files. We execute the
experiments on a Linux Server (Ubuntu 18.04) running on
Intel Core I7-6850K CPU and 64GB DDR4 RAM, with 4
Nvidia 1080Ti Graphics cards containing 44GB VRAM. We
report the accuracy score on the symptom classification task.
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Respiratory Symptoms
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Fig. 3. In-House Data Distribution

C. Model Hyper-parameter Tuning

We fine-tune the model parameters through exhaustive ex-
periments. In the traditional machine learning models, we
follow a Leave-One-Subject-Out (LOSO) evaluation where
a model is trained on three different users’ data and tested

2https://github.com/virufy/virufy-data

on the fourth user’s data. We repeat this procedure for each
model under different parameter values to find out the best-
performing settings as reported in Table II.

Optimum settings for the deep model can be split into two
phases. Initially, we experiment with different audio segment
lengths and input Mel-spectrogram image sizes for the deep
learning model. This experiment is followed by experiments
with the network hyper-parameters. Experimental findings are
reported in Table III and Table IV respectively.

TABLE II
OPTIMAL PARAMETERS FOR MACHINE LEARNING MODELS

Model Parameters Values
Random Forest n estimators = 20, max depth = 2,

min samples split = 0.3
SVM c = 100, kernel = rbf , gamma = scale
MLP activation = tanh, hidden layer sizes = 100
Decision Tree criterion = entropy, max depth = 10

TABLE III
PERFORMANCE UNDER VARIOUS AUDIO SEGMENT LENGTHS AND MEL

SPECTROGRAM IMAGE SIZES

Audio Segment Image Size (Width x Height)

(224x224) (512x512) (1024x1024)

0.5 Sec 99.05 96.87 76.01

1 Sec 92.14 86.23 80.57

TABLE IV
PERFORMANCE UNDER VARIOUS STRIDE LENGTHS AND FULLY

CONNECTED LAYER COMPUTATION UNITS

Stride Fully Connected Layer Settings

(4096, 256) (256, 128) (256) (128)

3 99.73 98.66 98.92 98.37

2 99.05 98.29 96.98 97.32

We find that the acoustic data segment of 0.5 sec and the
image size of dimension 224x224 perform optimally with a
max-pooling layer stride length of 2 and 128 computational
units on the first fully connected layer. We assume that such
parameter findings will be beneficial for the future real-time
implementation. In the next section, we report the experimental
findings based on the optimal settings in details.

V. RESULTS

We report our experimental findings on eSense’s acoustic
data in this section. Our experiments are mainly focused on
the performance evaluation between different machine learning
models and the application of domain adaptation techniques
in the field of earable-based respiratory symptoms detection.
Model performance is measured in terms of symptom detec-
tion accuracy.
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A. Model Performances Comparison

In comparing the traditional machine learning models with
the deep learning model, we ensure that all machine learning
models and the input features are at the optimum settings.
Initially, we extract 46 statistical features and out of 46
features, we leverage the optimal number of features across the
traditional models. Under the optimum performance settings,
we carry out LOSO evaluation to measure the performances.
Detailed model comparisons are presented in Figure 4.

The purple color bars represent the performance compar-
isons among different models and show that the deep learning
model outperforms the traditional models by large margins.
In order to evaluate the model scalability, we test the trained
models on a different dataset and we observe that most of the
traditional machine learning models do not deviate from the
performance whereas the deep learning model performance
degrades from 97.15% to 27.48%.
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Model Comparisons for Symptoms Detection
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Fig. 4. Model Performances Comparison

B. Domain Adaptation Feasibility Study

Even though the reported model performances in different
literature are quite high, our experiment reveals that the perfor-
mance drops when a trained model is exposed to unseen data
samples. It is mainly due to the data distribution heterogeneity
caused by various factors such as device sampling frequency,
device placement, user behaviour, and data collection proce-
dure. We aim to increase the robustness of our trained deep
model by implementing a domain adaptation technique. In
the adaptation process, we use all three classes from our In-
house dataset and the only available class (coughing) samples
from the Virufy IV-A dataset. Our adaptation of the RevGrad
layer [13] indeed recovers some of the performance loss,
increasing the accuracy from 27.48% to 47.65%.

Apart from implementing a domain adaptation technique,
we attempt to investigate the reasoning for such performance
degradation through visual inspection of the dataset samples.
Figure 5 shows a distinctive coughing pattern between two
users which further causes different induced silence lengths in
the audio files.

0 5 10 15
Time (Seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
De

cib
el

 (d
B)

0 5 10 15
Time (Seconds)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

No
rm

al
ize

d 
De

cib
el

 (d
B)

Fig. 5. Visual Inspection of Dataset Samples [Top: In-house Dataset (young
male participant), Bottom: Virufy Dataset (elder female participant)]

VI. DISCUSSION

We discuss a few issues that we have faced during our study
ranging from dataset preprocessing to the prospective applica-
tion of such proposed methodology in real-time systems.

• Data Processing: During our data preprocessing, we do
not remove the silences. In many cases, silence is also
considered as noise. Considering a hypothetical scenario
where there could have been other noises instead of si-
lence, such as dishwashing and car honking, removing the
silence segments from the audio files will not make much
of a difference if such noises are included. However,
removing the silence and investigating the performance
could be a future step in domain adaptation methodology.

• Real-time Implementation: Integrating the symptom de-
tection pipeline into a smartphone is trivial but there
are several implementation issues such as application
power usage, application operation in the background,
and detection of the non-symptom audio signals. These
are several undeniable hindrances for real-time imple-
mentation.

• Mel-spectrogram Generation: In our deep learning
methodology, we have generated Mel-spectrograms from
the audio samples which might trigger an additional
processing issue as well as device memory issue. Instead,
if the audio data could be processed in its original form,
such steps could be avoided. Thus, the domain adaptation
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performance under such a situation could be one with the
potential to work.

• Coughing Frequency Detection: Along with symptom
detection, detecting the number of times a person suffers
from any respiratory symptoms could also be a comple-
mentary measurement for symptom severity detection.

VII. CONCLUSION

We studied the feasibility of earable-provided acoustic data
for respiratory symptom detection using various machine
learning models. First, we collected a dataset for our feasibility
study. We further extended our feasibility study once we
found that when a trained model was tested with a dataset
different from the training dataset, the performance degraded,
providing a clear indication for the application of domain
adaptation to increase the trained-model scalability. Our initial
adaptation of an adversarial domain adaptation technique over
a publicly available cough dataset reveals a promising sign for
model scalability and performance improvement. In the future,
we aim to investigate the issues discussed in the discussion
section.
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