Study Materials for REU Students in Natural Language Processing and Computer-Vision Applications

Research Objective: The objective of this study document is to help the REU students to understand and familiarize themselves with multi-modal computer vision and NLP-based research applications. The document enlists the resources to learn the basic commands of GitHub, Python, ML open-source codebases. It also enlists a few interesting high-level research problems such as.

- Visual and Audio Navigation Rescue Mission, Self-driving, etc.
- Scene Understanding from the video and associate a descriptive text. This can be applied across various fields such as sports analytics, smart home and smart health.
- VQA (Visual Questioning Answering) system for physically challenged people, smart flood systems, etc.

For better understanding of the research area and various state-of-the-art algorithms, please refer to this GitHub repository: <u>Link</u>

Timeline	Agenda
Week 1 Background	 Understand the basic commands of GitHub and ML open-source libraries. 1. <u>GitHub</u> 2. <u>PyTorch</u> 3. <u>TensorFlow</u> Learn how to use basic GitHub, ML open sources using any programming language.
Week 2 - 3 Deep Learning and ML Libraries	 Study in-depth about various deep learning architectures and its functions (loss, hyperparameters, training and testing setup, etc) 1. <u>Basic image processing techniques</u> 2. <u>Basic understanding of Transformers</u> 3. <u>Basic Architecture of Seq-Seq translation</u> 4. <u>Basic understanding of LSTM</u> 5. <u>Other Popular Deep Learning Architectures</u> Gain hands-on experience by implementing various deep learning architectures and pre-processing techniques to design research frameworks or algorithms.

Week 4 - 6	Read through state-of-the-art literature in CV and NLP application areas.
Related Papers	 End-to-End Video Captioning End-to-End Video Captioning with Multitask Reinforcement Learning Deep Learning Contextual Models for Prediction of Sport Events Knowledge-Based Video Question Answering with Unsupervised Scene Descriptions VideoBERT: A Joint Model for Video and Language Representation Learning Attention-Based Multimodal Fusion for Video Description Long-term Recurrent Convolutional Networks for Visual Recognition and Description Fine-grained Video Captioning for Sports Narrative Sports Video Captioning via Attentive Motion Representation and Group Relationship Modeling
Week 7 - 9	Read through the following tutorial links, GitHub codes, and papers.
Experiments	 Open-source references for NLP and CV applications Deep Learning Contextual Models for Prediction of Sport Events (Code) Video and Text Captioning PyTorch Implementation Guide Implementation of Attention Mechanism Evaluation Metrics for NLP based algorithm
Week 10	Prepare the final report and presentation slides.