
Vicki Young, Jumman Hossain

08/10 Week 10 Final Project Report
Enhancing Robotic Navigation: An Evaluation of Single and 
Multi-Objective Reinforcement Learning Strategies



Problem Statement

Goal-driven autonomous navigation: 
training robots how to get to a specific place 
(end goal) while smartly avoiding obstacles

A comparative analysis between single-objective 
and multi-objective reinforcement learning (RL) methods for training 
a robot in goal-driven autonomous navigation

- In traditional RL: the robot learns to optimize a single objective.
- This fails when there are multiple, conflicting objectives that 

need to be considered. 
- Solution: multi-objective RL.



Background Information



Reinforcement Learning (RL)
RL is best for autonomous robot performance.

● Similar to how humans learn: from experience by trial and error.

An agent learns by taking actions to interact with its environment and receives feedback in the 
form of a reward.

Agent’s goal: maximize the total reward it receives. 

Learn to choose the best actions in given situations which lead to the overall best outcome.

● Policy = Taking a particular action in a particular situation. 

● Optimal policy = Taking the best/optimal action. 

The goal of RL is essentially to learn the optimal policy.



Single-Objective Reinforcement Learning
Traditional RL methods: an agent learns to prioritize a single objective by aiming to maximize 

a single numerical reward. This study: the robot has one objective, navigate to the end goal.

● Deep Q-Network (DQN) = learns a Q-value function, which informs the action quality of 

a given action (its Q-value). 

● Deep Deterministic Policy Gradient (DDPG) = learns a policy, a way of deciding what 

actions to take in a given situation. Uses an actor-critic algorithm, where an actor 

chooses actions and a critic gives their Q-values. 

● Twin Delayed DDPG (TD3) = based on DDPG, has an actor and two critics, and also 

learns a policy. Helps avoid overestimating the value of a bad action, since the lower 

Q-value will be used instead.



Multi-Objective Reinforcement Learning (MORL)

Real-world problems often require balancing multiple, potentially conflicting objectives. 

Example: A self-driving car. The car must reach its destination as fast as possible, but must 
also avoid collisions and minimize energy consumption.

MORL simultaneously optimizes multiple 
objectives.

● Modify the reward function: return a 
vector of rewards

● Find a Pareto optimal solution: no policy 
is strictly the best



Methods



Frameworks

Gazebo simulation framework is used to simulate testing/training the robot. 

TurtleBot3 robot reads data from LiDAR sensors using ROS topics.

Robot Operating System (ROS) control features allow RL methods to use the 
robot sensory information to make navigation decisions.



System Architecture

The system architecture 
describes how information about 
the environment is input to the 
reward function, and its output 
helps the chosen policy decide 
what action the robot should 
take.



Reward Function
robot movement = action_linear & action_angular

robot distance from end goal = goal_dist & goal_angle

robot distance from nearest obstacle = min_obstacle_dist

robot status in terms of objective = succeed



Environments

Stage B has an environment with 
6 moving obstacles (white).

Stage A has an environment with 3 
non-moving obstacles (pink) and 
4 moving obstacles (white).



Results



DQN

DDPGTD3

Training algorithms on stage A



DQN

Training algorithms on stage B

DDPGTD3



Reward graph comparisons

stage A

stage B



Reward graph comparisons

stage A

stage B

DQN best performing episodes: [2700, 2800, 3200, 2000]

with scores: [-3579, -3766, -3782, -3823]

DDPG best performing episodes: [3200, 3300, 3500, 3000]

with scores: [-2322, -2349, -2484, -2551]

TD3  best performing episodes: [1200, 900, 600, 1000]

with scores: [-2517, -2892, -2938, -2943]

DQN best performing episodes: [2000, 3500, 3100, 3600]

with scores: [-2401, -2532, -2578, -2629]

DDPG best performing episodes: [2600, 2800, 2900, 3200]

with scores: [-1126, -1509, -1512, -1522]

TD3 best performing episodes: [3600, 3500, 3300, 3400]

with scores: [-1637, -1766, 2064, -2103]



Testing algorithms
DDPG_stage_A testing on stage_A (episode 4200 to 8000 | 3800 total)
Successes: 1450 (38.16%), collision (wall): 543 (14.29%), collision (obs): 1768 (46.53%), timeouts: 39, 
(1.03%), tumbles: 0, (0.00%

DDPG_stage_A testing on stage_B (episode 4000 to 4200| 200 total) 
Successes: 31 (15.50%), collision (wall): 100 (50.00%), collision (obs): 51 (25.50%), timeouts: 18, (9.00%), 
tumbles: 0, (0.00%)

TD3_stage_A testing on stage_A (episode 4000 to 5700 | 1700 total)
Successes: 584 (34.35%), collision (wall): 301 (17.71%), collision (obs): 593 (34.88%), timeouts: 222, 
(13.06%), tumbles: 0, (0.00%)

TD3_stage_A testing on stage_B (episode 4000 to 4100 | 100 total)
Successes: 42 (42.00%), collision (wall): 16 (16.00%), collision (obs): 34 (34.00%), timeouts: 8, (8.00%), 
tumbles: 0, (0.00%)



Conclusion



Future work

● Continue to test the trained models

○ Work on increasing the success rate

● Implement MORL algorithm

○ Compare the performance of MORL 

with single-objective RL algorithms

● Load models onto a physical robot

○ Test on different robots?



Skills acquired during the REU

● Experience with machine learning—reinforcement learning
○ RL algorithms: MDP, V & Q-value, MORL

○ Deep neural networks

● Experience with Gazebo, ROS, Python libraries 

○ ROS packages, topics, services/clients

○ numpy, pytorch, rclpy
● Experience with Overleaf and LaTeX



Research experience 
gained during the 
REU

● Reading related papers 

○ Draw connections

● Training/testing process

● Research equipment needed

● How to develop + present ideas

○ Charts, graphs, equations

Data collection is 80% of the work



Thank You


