

Addressing Statistical Heterogeneity in Federated Learning For Sea Ship Datasets

<u>Serena Lin¹</u>, Emon Dey², Anuradha Ravi², Nirmalya Roy²

¹Department of Electrical and Computer Engineering, Northeastern University ²Department of Information Systems, University of Maryland in Baltimore County

We propose a **method** to *homogenize* h<u>eterogene</u>ous datasets for training a federated learning model and determining necessary granularity for <u>accurate</u> model performance.

Machine Learning vs Federated Learning

Federated Learning Architecture

Traditional Machine Learning

Federated Learning (FedML)

- Advantage
 - Protects user privacy
 - Sends model weights
- Disadvantage
 - Slower weight updates
 - Slower convergence
 - Minimize the loss function
 - Sensitive to heterogeneity
 - Datasets

Statistical Heterogeneity

• Causes

- Skewed label distribution
- Skewed feature distribution
- Granularity differences

- Approach
 - Ignore annotations and recluster based on images
 - Use annotations to confirm reclustering
 - Must determine number of classes

Methodology

- Annotated Ship Datasets
 - ABOShips, Seaships, VIS onshore and offshore
- Python Scripts:
 - Crop and Sort Images
 - Extract Features
 - Create T-SNE Plot
 - Determine Perplexity Value
 - Recluster Images & Reannotate
- Future: Use to train model

Dataset Preparation: Cropping

- ABOShips, Seaships, VIS offshore and onshore
- Annotations
 - Seaship boundaries
 - X min
 - X max
 - Y min
 - Y max
 - Boat Class
 - Ex: cargo ship, passenger ship, cruise-boat, bulk cargo carrier
- Crop and categorize into class folders

Dataset Preparation: Feature Extraction

- Convert images to vectors based on averaging feature vectors the algorithm recognizes and extracts
 - Stores the features as a numpy array
- Off the shelf resnet feature extractor (CNN)
 - Github repository: img2vec
 - Fixed classes
- Allows direct numerical image comparison
 - Similarity score csv files
- Customized Python Scripts

	Standard	Standard	Standard	
1	Folder 1	Folder 2	Similarity	
2	Boat	Miscellaneous	0.97630334	
3	Boat	Passengership	0.8921411	
4	Boat	Motorboat	0.97385085	
5	Boat	Ferry	0.8302501	
6	Boat	Militaryship	0.7427224	
7	Boat	Miscboat	0.9201295	
8	Boat	Cruiseship	0.77406377	
9	Boat	Sailboat	0.6982449	
10	Boat	Seamark	0.9686703	
11	Boat	Cargoship	0.764315	
12	Miscellaneous	Boat	0.97630334	
13	Miscellaneous	ous Passengership 0.82		
14	Miscellaneous	Motorboat	0.9299425	

aboships_similarity.csv

img2vec simulation

T-SNE Plot

- t-distributed stochastic neighbor embedding (T-SNE)
- Nonlinear dimensionality reduction algorithm to reduce dimensionality
 - Clusters similar points together and distance between different clusters
- Perplexity value
 - If low, tendency is too many points together in a cluster & will not increase distance between different clusters
 - If high, opposite occurs
- Perplexity vs Divergence Graphs: pinpoint correct value
 - Divergence quantifies the difference between 2 probability distributions (ie clusters)
 - \circ $\hfill We find the minimum divergence before stabilization and take its perplexity value$

Perplexity vs Divergence Graphs Seaships & ABO Ships

T-SNE Dataset Visualization

- We group ships based on features
- T-SNE allows cluster visualization of similarities/differences between classes
- Python Script
- Set perplexity level to previously determined values

Future Steps

- Cluster the datasets together
- Apply method to the federated learning setting
 - Integrate with FedML platform cross-silo edge devices
- Impact: can be applied to preparing many different types of image datasets
 - Is usable strategy for homogenization

Skills Learned Specific to Project

- Fundamentals of Machine & Federated Learning
 - Math behind the models: gradient descent algorithms, convolutional neural networks (cnn), loss functions. Back batch propagation, feature selection, unsupervised/supervised learning, bias-variance tradeoff
- Ubuntu Linux Terminal
 - Install and execute programs and code
- FedML Simulations and ML-ops Platform
- Github
- Python
 - Libraries: tensorflow, pytorch, sklearn, matplotlib
 - File image cropping, feature extraction, t-sne plot creation, perplexity scores, csv file read and write

📌 FedML	III ML Platforms				
Cross-silo Federated Learning MLOps	Connecting Data Silos: 1. Please connect (bind) your device (data silo) to this platform with CLI: fedml login 2 login d72e3e69165345f68ea438ee8c5db7af 2. After binding devices, please click "Q" to refresh "My Edge Devices"				
₽ User Guide					
Edge Device	My Edge Devices o				
- 2 Collaborator Group					
- III Project	Device ID	Туре	Name		
### My Applications	17896	Linux	▲ MPSC Laptop		
	17787	Linux	& MPSC Emon's PC		

Other Research Skills Learned

- Robot Operating System (ROS)
 - Fundamentals, writing publisher and subscribers in c++ and python
- Google Colab: keras machine learning model
- Semantic Segmentation Editor: Lidar
- Overleaf: LaTeX
 - Documentation & IEEE Paper Formatting

References

[1] B. Iancu, V. Soloviev, L. Zelioli, and J. Lilius, Aboships – an inshore and offshore maritime vessel detection dataset with precise annotations, 2021. arXiv: 2102. 05869

[2] Z. Shao, W. Wu, Z. Wang, W. Du, and C. Li, "Sea-ships: A large-scale precisely annotated dataset for ship detection," IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2593–2604, 2018.: 10.1109/TMM.2018.2865686.

[3] J. Wang, Z. Charles, Z. Xu, et al., A field guide to federated optimization, 2021. arXiv: 2107.06917

[4] A. Ahmad, W. Luo, and A. Robles-Kelly, "Robust federated learning under statistical heterogeneity via hessian spectral decomposition," Pattern Recognition, vol. 141, p. 109 635, 2023, ISSN: 0031-3203.DOI: https://doiorg/10.1016/j.patcog.2023.109635. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320323003369.

[5] J. Han, A. F. Khan, S. Zawad, et al., "Heterogeneity-aware adaptive federated learning scheduling," in 2022 IEEE International Conference on Big Data (Big Data), 2022, pp. 911–920 10.1109/BigData55660.2022.10020721.

[6] B. Gong, T. Xing, Z. Liu, J. Wang, and X. Liu, "Adaptive clustered federated learning for heterogeneous data in edge computing," Mob. Netw. Appl., vol. 27, no. 4, pp. 1520–1530, Aug. 2022,: 1383-469X.: 10.1007/s11036-022-01978-8. [Online]. Available: https://doi.org/10.1007/s11036-022-01978-8.

[7] M. Er, Y. Zhang, J. Chen, and W. Gao, "Ship detection with deep learning: A survey," Artificial Intelligence Review, pp. 1–41, Mar. 2023.: 10. 1007 / s10462 - 023-10455-x.

[8] C. He, S. Li, J. So, et al., "Fedml: A research library and benchmark for federated machine learning,"ArXiv vol. abs/2007.13518, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220793772.

Acknowledgements

- Emon Dey
- Dr. Anuradha Ravi
- Dr. Nirmalya Roy
- PhD Students in the Lab
- Ms. Marjory Pineda
- Fellow REU students

This work has been partially supported by ONR Grant #N00014-23-1-2119, U.S. Army Grant #W911NF2120076,NSF CAREER Award #1750936, NSF REU Site Grant #2050999 and NSF CNS EAGER Grant #2233879.

12 6

A line

a N