Multi-modal Unsupervised Variational Autoencoder framework for artifact detection

Student: Indrajeet Ghosh, Juan Arizpe Vega
Faculty: Dr. Kasthuri Jayarajah and Dr. Nirmalya Roy
ARL Collaborator: Dr. Nicholas Waytowich
Introduction - Artifacts

Artifact – A normal unpredictable distortion within data caused by cognitive and/or physical characteristics.

- Eye Artifacts
- Face Movements
- Muscle Artifacts
- Motion Artifacts
- Connectivity Noise
- Malfunction Channel Noise

Sensors for collecting data:
- EEG - Electroencephalogram
 - Brain wave recordings
 - Neural Activity

Anomalies

Point Anomalies

Collective Anomalies

Contextual Anomalies
Challenges / Motivation

Being able to properly identify artifacts from data with high accuracy

Challenges:

- Parameters of Signal to Noise Ratio (SNR)
 - EEG = 0.526
- Artifacts Noise
- Data Requires Annotation
- Preprocessing Step
- Scalability

Solution:

- End-to-end multimodal Unsupervised framework for artifact detection
- Reduce artifacts without the need of human annotation
High Working Memory (WM) Problems:

- Mental health
- Driving
- Learning

Proposal: Wearable Smart Watches are able to collect PPG information to determine WM.

Problem: Corrupted PPG data due to picking up external artifacts.

Utilized Pre & Post Processing of data to acquire accurate data

Fig. 3. Peak detection on: (a) raw signal and (b) processed signal by EMD.
Motivation:

Proposes a neural network-based filtering method to remove corrupted zones from the collected PPG data in an unsupervised manner. It also proposed PPG data summarization and augmentation strategies.

Discrete Wavelet Transform (DWT) - sequence summarization approach towards data

Collective Anomalies
Related Works

Generative Adversarial Active Learning for Unsupervised Outlier Detection
(Yezheng Liu et al.)

Multiple-Objective Generative Adversarial Active Learning (MO-GAAL) Architecture

10 Generators with different objectives of producing artificial outlier data points. Discriminator Learns from Generators and is able to learn to identify Outlier data.

Real world Datasets: Pima, Shuttle, Stamps, PageBlacks, PenDigits, Annthyroid, waveform, WDBC, Ionosphere, spamBase, APS, Arrhythm, HAR, p53 Mutant
Related Works

Unsupervised EEG Artifact Detection and Correction (Sari Saba-Sadiya et al.)

Motivation:
End-to-end pre-processing pipeline for the automated identification, rejection and removal/correction of EEG artifacts using a combination of feature-based and deep-learning models.
AutoEncoder (AE)

Unsupervised Technique to reduce the dimensionality of data into fewer values than decode the data back to its original dimensionality

Purpose:
- Extract important features from data.
- Reduction of noise

Example:
Sari Saba-Sadiya et al.

\[
\text{loss} = \|x - \hat{x}\|_2 = \|x - d_\phi(z)\|_2 = \|x - d_\phi(e_\theta(x))\|_2
\]
Variational Autoencoder

Unsupervised Technique to reduce the dimensionality of data into fewer values and regularizing the encoded information than feeding it to the decoder to output the data to its normal form

Purpose:

- Extract important features from data.
- Reduction of noise
- Regularized latent space

Regularized Latent space by using constraints - Normal Distribution
Latent distribution - mean & variance

\[
\begin{align*}
\text{encoder} & \quad e_\theta(x) \\
\mu_x, \sigma_x & \quad z \sim \mathcal{N}(\mu_x, \sigma_x) \\
\text{decoder} & \quad d_\phi(z) \\
\text{reconstruction loss} & = \|x - \hat{x}\|_2 = \|x - d_\phi(z)\|_2 = \|x - d_\phi(\mu_x + \sigma_x \epsilon)\|_2 \\
\mu_x, \sigma_x & = e_\theta(x), \quad \epsilon \sim \mathcal{N}(0, 1) \\
\text{similarity loss} & = KL \text{ Divergence} = D_{KL}(\mathcal{N}(\mu_x, \sigma_x) \| \mathcal{N}(0, 1)) \\
\text{loss} & = \text{reconstruction loss} + \text{similarity loss}
\end{align*}
\]
Autoencoder (AE)

- Used to generate a compressed transformation of input in a latent space.

Variational Autoencoder (VAE)

- Enforces conditions on the latent variable to be the unit norm.
- The latent variable in the compressed form is mean and variance.
- Regularized latent space.
Approach

TASK 1 - Artifact Detection

- **INPUT**
- **FEATURE MODULE**
- **REPRESENTATION LEARNING**
- **ARTIFACT DETECTION**

TASK 2 - Artifact Correction and Downstream tasks

- **CLEAN INPUT**
- **FEATURE MODULE**
- **REPRESENTATION LEARNING**
- **DOWNSTREAM TASKS**

Artifact-Free
Approach

Our proposed framework three module:

- **Feature Module :-**
 - EEG Signals - Total 58 handcrafted features
 - **Continuity features** - Bursts, spikes, and unusual changes in the mean and standard deviation in the frequency and power domains (median frequency, alpha, beta, gamma, etc.).
 - **Connectivity features** - statistical dependence of EEG signal activity across two or more channels (mutual information, coherence, etc.).
 - **Complexity features** - information-theoretic perspective and are known to correlate with impaired cognitive functions and the presence of degenerative illnesses (Shannon entropy, information quality, false neighbour, etc.).
 - Physiological Signals -
 - **PPG Signals** - beats per minute, interbeat interval, standard deviation of RR intervals, median absolute deviation of RR intervals, etc. [Win-ken, et,al IEEE Journal of Biomedical and Health Informatics 2023]
 - **GSR Signals** - Phasic and Tonic Signals.
Shannon entropy—a way to quantify, in a statistical sense, the amount of uncertainty or randomness in the pattern.

TABLE 1 | EEG Features

<table>
<thead>
<tr>
<th>Signal Descriptor</th>
<th>References</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shannon entropy</td>
<td>(23)</td>
<td>Degree of randomness or irregularity</td>
</tr>
<tr>
<td>Tails entropy (n = 10)</td>
<td>(23)</td>
<td>Additive measure of signal stochasticity</td>
</tr>
<tr>
<td>Information quantity (β, α, β, γ)</td>
<td>(12)</td>
<td>Non-additive measure of signal stochasticity</td>
</tr>
<tr>
<td>Fractal dimension (n = 2)</td>
<td>(22)</td>
<td>Entropy of a wavelet decomposed signal</td>
</tr>
<tr>
<td>Fractal dimension (n = 2)</td>
<td>(22)</td>
<td>Rate of change in signal spectral band power</td>
</tr>
<tr>
<td>False nearest neighbour</td>
<td>(30)</td>
<td>Separation between signals with similar trajectories</td>
</tr>
<tr>
<td>ARMA coefficients (n = 2)</td>
<td>(33)</td>
<td>How signal properties change with scale</td>
</tr>
<tr>
<td>Continuity features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median frequency</td>
<td>(11)</td>
<td>Mean signal frequency</td>
</tr>
<tr>
<td>δ band power</td>
<td>(14)</td>
<td>Rate of change in mean signal frequency</td>
</tr>
<tr>
<td>θ band power</td>
<td>(14)</td>
<td>Signal continuity and smoothness</td>
</tr>
<tr>
<td>θ band power</td>
<td>(14)</td>
<td>Autoregressive coefficient of signal at t-1 and t-2</td>
</tr>
<tr>
<td>Connectivity features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coherence – γ</td>
<td>(14)</td>
<td>Clinically grounded signal characteristics</td>
</tr>
<tr>
<td>Mutual information</td>
<td>(18)</td>
<td>Spectral power in the 0–3 Hz range</td>
</tr>
<tr>
<td>Granger causality – AI</td>
<td>(33)</td>
<td>Spectral power in the 4–7 Hz range</td>
</tr>
<tr>
<td>Phase lag index</td>
<td>(34)</td>
<td>Spectral power in the 6–15 Hz range</td>
</tr>
<tr>
<td>Cross-correlation magnitude</td>
<td>(35)</td>
<td>Spectral power in the 16–31 Hz range</td>
</tr>
<tr>
<td>Cross-correlation – lag</td>
<td>(35)</td>
<td>Spectral power above 32 Hz</td>
</tr>
</tbody>
</table>

The 58 EEG features fall into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).
Approach

Our proposed framework three module

- **Representation Learning Module:**
 - We employed Variational AutoEncoder to learn the underlying data distribution
 - operates with a probability distribution for each latent variable instead of outputs a single value to describe each latent variable
 - Sampling technique - mean and variance (reparameterization trick)

- **Artifact Detection and Correction Module:**
 - Propagate and reconstructed signals using the trained model to quantify the divergence from ground-truth (noise-free and with-noise)
 - Downstream Task - Cognitive monitoring
 - Quantify the cognitive overhead in performing working memory tasks.
Baseline Algorithms -

- **Statistical-based Algorithms:**
 - Angle Based Outlier Detection -
 - Detects anomalies based on data points angles.
 - One Class Support Vector Machine -
 - Classifies datasets into groups by drawing vectors.
 - Local Outlier Factor -
 - Determines Outliers by calculating distances between variables.
Baseline Algorithms -

- **Deep Learning Representation-based Algorithms**:
 - AutoEncoder [Sari Saba-Sadiya et al.]
 - Determines outlier data by interpolation of data.
 - GAAL
 - Single Anomaly Generative Model with discriminator.
 - MO-GAAL
 - Multiple Anomaly Generative Model with discriminator.
VAE

- Representation Learning
 - Encoder -
 - Downsampling Technique
 - Reduces dimensionality of data - mean & variance
 - Regularized latent space from previous data
 - Decoder
 - Upsampling Technique
 - Regenerates data but without outlier data
- Model Learning Module
 - KL-Divergence Loss + MSE loss (Similarity loss)
 - Loss functions assures data is reconstructed properly.
Training phase

- Trained for 30 Epochs
- Every ten epochs
- Overfitting Indicator
Results

F1-score
- Accuracy measure of Precision & Recall

Precision
- Overall the times it got true positive.

Worst: OCSVM
Alright: LOF, ABOD
Best: EEG-VAE
Future work

Include: EEG + GSR + PPG = 0.567

photoplethysmography (PPG)
Galvanin Skin Response (GSR)

Implement disantagle Variational Autoencoder
Acknowledgement

This research could not have been possible for the mentorship and hard work of Indrajeet Ghosh. Also alongside the support of Dr. Nirmalya Roy and Dr. Kasthuri Jayarajah.

This research is supported by the NSF Research Experience for Undergraduates (REU) grant \# CNS-2050999, NSF CAREER Award \# 1750936 and U.S. Army Grant \# W911NF2120076.
Implementation

Indrajeet Ghosh,
Juan Arizpe Vega
Environments

Jarvis: Remote Server
- Use Docker - start jupyter environment
- Install necessary libraries
- Store scripts, files, and data

Jupyter Notebook
- GUI - for file management and coding

Github
- Version Control - Debugging
- History Log
- Cloning existing projects

Python 3 - Coding Language implemented
Artifact Detection - Extracts the features from data

Outlier detection - Models
- Depv-Decoding EEG for passive viewing
- EEG-acvc - EEG artifact correction via completion
- GAAL - GAAL Based outlier detection

Outlier detection - Stats
- Angle Based Outlier Detection
- Local Outlier Factor
- One class support vector machine
Unsupervised model for anomaly detection

-Sklearn Function-

Initializing - Data is feed into function
- Creates data variable
- Creates SVM Object/Model

Forward -
- Returns a vector of scores of likely how data is incorrect.
Local Outlier Factor

Utilizes distances to determine groups and points that are not within clusters

-Sklearn Function-

Initializing - Ground truth and outlier data is feed into the function.
- Creates data variable w/ Ground truth
- Creates boolean vector indexing the combined information of both data sets

Forward -
- Returns a vector of LOF scores of likely how data is incorrect.
- 1 indicates inlier higher means outlier
Determines outliers based on angles of points in comparison to other points

-Pyod package-

Initializing - Data is feed
- 60/40 Split
- Xd and Yd Train
- Unzip Xd by column

Forward -
- Returns a vector of scores
- Overall performance of ABOD
Implementation

Indrajeet Ghosh,
Juan Arizpe Vega
Implementation

Summary -
- Wrapped up EEG ABOD
 - Error, F1 - Score, and Cohen Kappa Score
 - Still have some bugs to work out
- Started to work on PPG and GSR feature extraction.
 - Came across preprocessing issues

Tools I’ve used
- Python Libraries-
 - Pickle
 - Numpy
 - Pandas
- Files Format
 - CSV
 - Pickle
 - Npy, and npz
Dataset -

- In-house dataset - Working Memory (WoM) Dataset
 - Comprised of multi-modal data - GSR, PPG, EEG
 - Collection 35 subjects performing four different visual-spatial tasks
- BCI Dataset -
 - EEG data from 9 subjects where they were tasked with four motor imagery tasks
 - 22 channels
- MAUS Dataset - Mental Workload
 - PixArt PPG watch & Procomp Infiniti PPG
 - 22 subjects
- Sari Saba-Sadiya et al. Dataset - Anomaly detection through interpolation
 - EEG data 32 channels, Visual-event potentials (VEP)
The 4 statistical features we construct for each 5 second time window are as follows:
1. mean, 2. standard deviation, 3. maximum, and 4. Minimum.

24 EDA features, from feature 1 to 24:
Feature 1 to 4 are the 4 statistical features of the raw EDA data.
Feature 5 to 8 are the 4 statistical features of the first derivative of the raw EDA data.
Feature 9 to 12 are the 4 statistical features of the second derivative of the raw EDA data.
Feature 13 to 16 are the 4 statistical features of the 1Hz wavelet coefficients of the raw EDA data.
Feature 17 to 20 are the 4 statistical features of the 2Hz wavelet coefficients of the raw EDA data.
Feature 21 to 24 are the 4 statistical features of the 4Hz wavelet coefficients of the raw EDA data.
96 Acceleration features, from feature 25 to 120:

25 - 28: are the 4 statistical features of the 3-axis acceleration magnitude data.

Feature 29 to 32 are the 4 statistical features of the first derivative of the 3-axis acceleration magnitude data.

Feature 33 to 36 are the 4 statistical features of the second derivative of the 3-axis acceleration magnitude data.

Feature 37 to 40 are the 4 statistical features of the x axis acceleration data.

Feature 41 to 44 are the 4 statistical features of the first derivative of the x axis acceleration data.

Feature 45 to 48 are the 4 statistical features of the second derivative of the x axis acceleration data.

Feature 49 to 52 are the 4 statistical features of the y axis acceleration data.

Feature 53 to 56 are the 4 statistical features of the first derivative of the y axis acceleration data.

Feature 57 to 60 are the 4 statistical features of the second derivative of the y axis acceleration data.

Feature 61 to 64 are the 4 statistical features of the z axis acceleration data.

Feature 65 to 68 are the 4 statistical features of the first derivative of the z axis acceleration data.

Feature 69 to 72 are the 4 statistical features of the second derivative of the z axis acceleration data.

Feature 73 to 76 are the 4 statistical features of the 1Hz wavelet coefficients of the 3-axis acceleration magnitude data.

Feature 77 to 80 are the 4 statistical features of the 2Hz wavelet coefficients of the 3-axis acceleration magnitude data.

Feature 81 to 84 are the 4 statistical features of the 4Hz wavelet coefficients of the 3-axis acceleration magnitude data.

Feature 85 to 88 are the 4 statistical features of the 1Hz wavelet coefficients of the x axis acceleration data.

Feature 89 to 92 are the 4 statistical features of the 2Hz wavelet coefficients of the x axis acceleration data.

Feature 93 to 96 are the 4 statistical features of the 4Hz wavelet coefficients of the x axis acceleration data.

Feature 97 to 100 are the 4 statistical features of the 1Hz wavelet coefficients of the y axis acceleration data.

Feature 101 to 104 are the 4 statistical features of the 2Hz wavelet coefficients of the y axis acceleration data.

Feature 105 to 108 are the 4 statistical features of the 4Hz wavelet coefficients of the y axis acceleration data.

Feature 109 to 112 are the 4 statistical features of the 1Hz wavelet coefficients of the z axis acceleration data.

Feature 113 to 116 are the 4 statistical features of the 2Hz wavelet coefficients of the z axis acceleration data.

Feature 117 to 120 are the 4 statistical features of the 4Hz wavelet coefficients of the z axis acceleration data.
PPG Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Time</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDNN</td>
<td>TF</td>
</tr>
<tr>
<td></td>
<td>NN50</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>PNN50</td>
<td>HF</td>
</tr>
<tr>
<td></td>
<td>RMSSD</td>
<td>LF</td>
</tr>
<tr>
<td></td>
<td>SDSD</td>
<td>LFn</td>
</tr>
<tr>
<td></td>
<td>TINN</td>
<td>HFn</td>
</tr>
<tr>
<td></td>
<td>TRI Index</td>
<td>LF/HF</td>
</tr>
<tr>
<td>Feature</td>
<td>Error %</td>
<td>F1-Score</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>bandPwr_alpha</td>
<td>23.15340909090909</td>
<td>0.5084978070175439</td>
</tr>
<tr>
<td>bandPwr_beta</td>
<td>20.170454545454545</td>
<td>0.5689803661605954</td>
</tr>
<tr>
<td>bandPwr_gamma</td>
<td>18.25284090909091</td>
<td>0.61257412280717017</td>
</tr>
<tr>
<td>std_res</td>
<td>19.03409090909091</td>
<td>0.5977057080108318</td>
</tr>
<tr>
<td>ratio_res</td>
<td>23.970170454545457</td>
<td>0.48721697859977975</td>
</tr>
<tr>
<td>regularity_res</td>
<td>21.022727272727273</td>
<td>0.5556749610865904</td>
</tr>
<tr>
<td>volto5_res</td>
<td>21.697443181818183</td>
<td>0.5388994373508458</td>
</tr>
<tr>
<td>volto10_res</td>
<td>21.661931818181817</td>
<td>0.54015899122807017</td>
</tr>
<tr>
<td>volto20_res</td>
<td>20.845170454545457</td>
<td>0.5618119811734641</td>
</tr>
<tr>
<td>df_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>spikeNum</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>deltaBurst</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>sharpSpike_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>numBursts_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>burstLenMean_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>burstLenStd_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>numSupps_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>supplenMean_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>supplenStd_res</td>
<td>17.329545454545457</td>
<td>0.4525660964230171</td>
</tr>
<tr>
<td>coherence_res</td>
<td>23.082386363636363</td>
<td>0.5078447990294561</td>
</tr>
</tbody>
</table>

Mean: Error Percent = 19.9067826704546 F1-Score = 0.5141297023617234 Cohen Kappa = 0.06764291726825149
Implementation

Indrajeet Ghosh,
Juan Arizpe Vega
Error Percent: Overall percentage of correct
F1 score: Harmonic mean. Calculates mean of precision vs recall.

\[
F1 \text{ score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

Cohen Kappa: A measure of consistency.

\[
kappa = \frac{\text{totalAccuracy} - \text{randomAccuracy}}{1 - \text{randomAccuracy}}
\]
EEG Results ABOD

- BCI Dataset -

EEG data from 9 subjects where they were tasked with four motor imagery tasks.

EEG Results ABOD

22 Channels: Error Percent: 20.0%

F1 Score: 0.51

Cohen Kappa: 0.07

TABLE 1	EEG Features.	
Signal Descriptor	References	Brief description
Complexity features		
Shannon entropy	(22)	Degree of randomness or irregularity
Tsallis entropy (n = 1.3)	(23)	Additive measure of signal stochasticity
Information quantity (α, β, γ)	(14)	Non-additive measure of signal stochasticity
Entropy of a wavelet decomposed signal		
Laplacian exponent	(20)	Entropy of a wavelet decomposed signal
Fractal embedding dimension	(27)	Rate of change in signal spectral band power
Hjorth mobility	(20)	How signal properties change with scale
Hjorth complexity	(20)	Mean signal frequency
False nearest neighbor	(30)	Rate of change in mean signal frequency
ARMA coefficients (n = 2)	(33)	Signal continuity and smoothness
ARMA coefficient of signal at 1-1 and 2-2		
Continuity features		
Median frequency		
Median band power		
Standard deviation	(11)	Average difference between signal value and its mean
w/k ratio	(14)	Ratio of the power spectral density in w and k bands
Regularity (burst-suppression)	(14)	Measure of signal stationarity/spectral consistency
Voltage (V, 10, 20 μV)		
Low signal amplitude		
Diffuse slowing	(32)	Indication of peak power spectral density < 8 Hz
Spikes	(33)	Signal amplitude exceeds μ by 3σ for 70 ms or less
Delta burst after spike	(30)	Increased Δ after spike, relative to Δ before spike
Sharp spike	(32)	Spikes lasting <70 ms
Number of bursts		
Burst length μ and σ		
Spectral power of bursts		
Burst band powers (α, β, γ)	Spectral power of bursts	
Number of suppressions		
Suppression length μ and σ		
Statistical properties of suppressions		
Connectivity features		
Coherence = α	(14)	Correlation in 0-4 Hz power between signals
Mutual information	(14)	Measure of dependence
Granger causality = α	(32)	Measure of causality
Phase lag index	(34)	Association between the instantaneous phase of signals
Cross-correlation magnitude	(35)	Maximum correlation between two signals
Cross-correlation = lag	(35)	Time delay that maximizes correlation between signals

The 98 EEG features fell into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).
Researching Other Data Sets:
Requirements for new dataset:
- Contains artifact annotations
- Is GSR or PPG

Implemented a save file for dataframe system with numpy library.
Next Steps

- Try to run tmux
- Keep working on EEG data