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W UIMBC  Introduction - Artifacts

Artifact — A normal unpredictable distortion within data caused by cognitive
and/or physical characteristics.
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W UMBC  Challenges / Motivation

Being able to properly identify artifacts from data with high accuracy
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UMBC Related Works

Robust PPG-Based Mental Workload Assessment System Using Wearable Devices

(Win-Ken Beh et al.)

High Working Memory (WM) Problems: . E”ﬁky ﬂ\“\’
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Fig. 3. Peak detection on: (a) raw signal and (b) processed signal by
EMD.
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Related Works

Deep Recurrent neural network-based autoencoder for Photoplethysmorgram (PPG) Artifact Filtering

(Joseph Azar et al.)

Motivation:

Proposes a neural network-based filtering method to
remove corrupted zones from the collected PPG data in
an unsupervised manner. It also proposed PPG data
summarization and augmentation strategies.

Discrete Wavelet Transform (DWT) - sequence
summarization approach towards data

Collective Anomalies
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Related Works

Generative Adversarial Active Learning for Unsupervised Outlier Detection

(Yezheng Liu et al.)

Multiple-Objective Generative Adversarial Active Learning (MO-GAAL) Architecture
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Discriminator D

Boundary description

10 Generators with different objectives of producing artificial outlier data points.
Discriminator Learns from Generators and is able to learn to identify Outlier data.

Real world Datasets: Pima, Shuttle, Stamps, PageBlacks, PenDigits, Annthyroid, waveform, WDBC, lonosphere,
spamBase, APS, Arrhthmai, HAR, p53 Mutant



UMBC Related Works

Unsupervised EEG Artifact Detection and Correction
(Sari Saba-Sadiya et al.)
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FIGURE 1 | Our methodological approach. The EEG data is first segmented into epochs (see A1, Az, As). Next, 58 features are extracted and an ensemble of
unsupervised outlier detection methods are used (see B4, B2, B3) to identify EEG epochs that are artifact-ridden and require interpolation (see Az and Bz). The
artifact-ridden epochs are then interpolated by an ensemble of deep encoder-decoder networks (see red line in C).




W UMBC AutoEncoder (AE

Unsupervised Technique to reduce the dimensionality of data into
fewer values than decode the data back to its original dimensionality

T T
Purpose: ]
e Extract important <
features from data. encoder decoder

e Reduction of noise — -

eq(x) dy(2)

Example:
Sari Saba-Sadiya et al.

loss = ||z — 2|2 = |lz — dy(2)[l, = |z — dg(ea(z))]],




WUMBC " Variational Autoencoder

Unsupervised Technique to reduce the dimensionality of data into
fewer values and regularizing the encoded information than
feeding it to the decoder to output the data to its normal form

Purpose:

e  Extract important
features from data.

e Reduction of noise

e Regularized latent
space

Regularized Latent space by
using constraints - Normal
Distribution

Latent distribution - mean &
variance

£

-

A
encoder e decoder
eo(z) dg(2)
reconstruction loss = ||z — &[|2 = ||z — dy(2)||, = ||z — dg(pa + o2€)||5

Mz, O :Eg(w), 6NN(011)
similarity loss = KL Divergence = D, (N (pz,0.) || N(0,1))

loss = reconstruction loss + similarity loss




W UMBC ' Variational AutoEncoder (AE) VS AE

Autoencoder (AE)

e Used to generate a compressed transformation of input in a latent space.

Variational Autoencoder (VAE)

e Enforces conditions on the latent variable to be the unit norm.
e The latent variable in the compressed form is mean and variance.
e Regularized latent space.



W& UMBC  Approach

TASK 1 - Artifact Detection
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W& UMBC  Approach

Our proposed framework three module:-

e Feature Module :-
o EEG Signals - Total 58 handcrafted features

m Continuity features - Bursts, spikes, and unusual changes in the mean and
standard deviation in the frequency and power domains (median frequency, alpha,
beta, gamma, etc.).

m Connectivity features - statistical dependence of EEG signal activity across two or
more channels (mutual information, coherence, etc.).

m  Complexity features - information-theoretic perspective and are known to correlate
with impaired cognitive functions and the presence ofdegenerative illnesses
(Shannon entropy, mnformation quality, false neighbour, etc.).

o Physiological Signals -
m PPG Signals- beats per minute, interbeat interval, standard deviation of RR

intervals, median absolute deviation of RR intervals, etc. [Win-Ken, et,al IEEE

Journal of Biomedical and Health Informatics 2023 ]
m GSR Signals- Phasic and Tonic Signals.



S UMBC Approach

Shannon entropy-a way to quantify, in a
statistical sense, the amount of uncertainty
or randomness in the pattern

Beta (B)

Alpha (a)

Theta (8)

Delta (y)

Time (Secs)

TABLE 1 | EEG Features.

Signal Descriptor References Brief description

Complexity features Degree of randomness or irregularity

Shannon entropy 22) Additive measure of signal stochasticity

Tsalis entropy (n = 10) (23) Non-additive measure of signal stochasticity
Information quantity (5, «. 8, B, ¥) (24) Entropy of a wavelet decomposed signal

Cepstrum coefficients (0 = 2) (25) Rate of change in signal spectral band power
Lyapunov exponent (26) Separation between signals with similar trajectories
Fractal embedding dimension @7) How signal properties change with scale

Hjorth mobility (28) Mean signal frequency

Hjorth complexity (28) Rate of change in mean signal frequency

False nearest neighbor (29) Signal continuity and smoothness

ARMA coefficients (n = 2) (30) Autoregressive coefficient of signal at (t-1) and (t-2)
Continuity features Clinically grounded signal characteristics

Median frequency The median spectral power

8 band power Spectral power in the 0-3 Hz range

6 band power Spectral power in the 4-7 Hz range

o band power Spectral power in the 8-15 Hz range

B band power Spectral power in the 16-31 Hz range

y band power Spegctral power above 32 Hz

Standard deviation 31) Average difference between signal value and it's mean
a/é ratio (14) Ratio of the power spectral density in & and § bands
Regularity (burst-suppression) (14) Measure of signal stationarity/spectral consistency
Voltage < (5, 10, 20 p) Low signal amplitude

Diffuse slowing 32) Indicator of peak power spectral density <8 Hz
Spikes (32) Signal amplitude exceeds u by 3¢ for 70 ms or less
Delta burst after spike 32) Increased é after spike, relative to é before spike
Sharp spike 32) Spikes lasting <70 ms

Number of bursts Number of amplitude bursts

Burst length p and o Statistical properties of bursts

Burst band powers (8, a, 8, 8, ¥} Spectral power of bursts

Number of suppressions Segments with contiguous amplitude suppression
Suppression length 1 and o Statistical properties of suppressions

Connectivity features Interactions between EEG electrode pairs
Coherence - § (14) Correlation in 0-4 Hz power between signals

Mutual information (18) Measure of dependence

Granger causality — All (33) measure of causality

Phase lag index (34) Association between the instantaneous phase of signals
Cross-correlation magnitude (35) Maximum correlation between two signals
Cross-correlation — lag (35) Time-delay that maximizes correlation between signals

The 58 EEG features fell into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).



W& UMBC  Approach

Our proposed framework three module

e Representation Learning Module: -
o We employed Variational AutoEncoder to learn the underlying data
distribution
m operates with a probability distribution for each latent variable instead
outputs a single value to describe each latent variable
m Sampling technique - mean and variance (reparameterization trick)
e Artifact Detection and Correction Module: -
o Propagate and reconstructed signals using the tramed model to quantify
the divergence from ground-truth (noise-free and with-noise)
o Downstream Task - Cognitive monitoring
m Quantify the cognitive overhead in performing working memory tasks.



W UMBC Baseline

Baseline Algorithms -

e Statistical-based Algorithms : -
o Angle Based Outlier Detection -
m Detects anomalies based on data pomts angles.
o One Class Support Vector Machine -
m Classifies datasets mto groups by drawing vectors.
o Local Outlier Factor -
m Determmes Outliers by calculating distances between variables.

m
Local Outlier Factor (LOF
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W UMBC ' Baseline

Baseline Algorithms -

e Deep Learning Representation -based Algorithms : -
o AutoEncoder [SariSaba-Sadiya et al ]
m Determines outlier data by interpolation of data.
o GAAL
m Single Anomaly Generative Model with discriminator.
o MO-GAAL
m Multiple Anomaly Generative Model with discriminator.



UMBC ' Our Proposed Framework

@ VAE
o Representation Learning

m Encoder-
e Downsampling Technique
e Reduces dimensionality ofdata - mean & variance
e Regularized latent space from previous data

m Decoder
e Upsampling Technique
e Regenerates data but without outlier data

© ModelLearning Module
m KL-Divergence Loss +MSE loss (Similarity loss)
m Loss functions assures data is reconstructed properly.



UMBC

* Trained for 30
Epochs

 Everyten epochs

* Overfitting
Indicator

Training phase

>ol: Training Loss
B I A Validation Loss
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W UMBC

Fl-score

-Accuracy measure of
Precision & Recall

Precision

-Overall the times it got
true positive.

Worst: OCSVM
Alright: LOF, ABOD
Best: EEG-VAE

Normalized Score
S © e o o ©
— N w I ol =]
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Results

LOF
OCSVM
ABOD
EEGVAE

|
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Precision
Metrics
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W UMBC Future work

' " ,\«J(\\wL m/ !
photoplethysmography (PPG) - o N
Galvanin Skin Response (GSR) e

Implement disantagle Variational Autoencoder

Include: eec+csr+pre=0.567 | L | u \
Coo |

Classifier
(4
Ny T |
x Z 0
Input x Encoder  Sampler q,, Decoder Output x’

Discriminator
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W UMBC Environments

Jarvis: Remote Server

e Use Docker - start jupyter environment
e Installnecessary libraries
e Store scripts, files, and data

Jupyter Notebook
e (GUI- for file management and coding
Github

e Version Control-Debugging
e History Log
e (loning existing projects

Python 3 - Coding Language implemented



¥ UMBC ' Methodology - File Structure

Artifact Detection - Extracts the features from data
Outlier detection - Models

e Depv-Decoding EEG for passive viewing

e FEEG-acvc - EEG artifact correction via
completion

e GAAL-GAALBased outlier detection

Outlier detection - Stats

e Angle Based Outlier Detection
e [ocalOutlier Factor

e One class support vector machine

L REU_2023_EEG/

— EEG22_results.ipynb
— EEG32_results.ipynb
GSR_results.ipynb
PPG_results.ipynb
EEGExtract.py
artifact_detection/

T T T TTIT

l— EEG_32ch_Features.py

— EEG_Features.py
— PPG_Features.py
L GSR_Features.py
depv_Base_Models/

L DEPV.py
eeg—acvc_Base_Models/
L EEG_ACVC.py
gaal_Base_Models/

L GAAL.py
stat_Base_Models/

— ABOD.py

— LOF.py

L 0CSVM.py
data/

— EEG/

|
|
—

L

— bcidatasetIV2a
L— osF

PPG

GSR/

— UTDallas

L uTballas_raw



& IUMBC = One Class Support Vector Machine

Novelty Detection

Unsupervised model for \ learned frontier
. 1 o training observations
anomaly detection

new regular observations
new abnormal observations

o e

-Sklearn Function-

Initializing - Data is feed into function
- Creates data variable -2
- Creates SVM Object/Model

Forward -
- Returns a vector of scores of
likely how data is incorrect.

T
—4 -2 ] 2 4
error train: 20/200 ; errors novel regular: 9/40 ; errors novel abnormal: 2/40



WUMBC  Local Qutlier Factor

Local Outlier Factor (LOF)

Utilizes distances to determine ,| ¢ Datapoints

o Outlier scores

groups and points that are not within
clusters 2

-Sklearn Function-

Initializing - Ground truth and outlier data is feed
into the function. 2
- Creates data variable w/ Ground truth
- Creates boolean vector indexing the

combined information of both data sets

Forward - "
. prediction errors: 8
- Returns a vector of LOF scores oflikely how
data is incorrect.
- lindicates inlear higher means outlier



& TUUMBC  Angle Based Outlier Detection

Determines outliers based on angles of points in comparison to other points

-Pyod package-

Iitializing - Data is feed . "
- 60/40 Split z| o . " 7
- Xd and Yd Train i o
- Unzip Xd by column a
] 'ﬂ'..__\_\_h o
;H"'H._‘_“_ ‘-\"‘\“\ s
Forward - o e T
- Returns a vector of » T\ 0 )
scores & " %
_l-l-—_"-!—_-_-_
- Overallperformance _| - il
of ABOD 7
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& UMBC ~Implementation

Summary - Tools I've used
- Wrapped up EEG ABOD - Python Libraries-
- Error, F1 - Score, and Cohen - Pickle
Kappa Score - Numpy
. - Pandas
- Still have some bugs to work out Files Format
- Started to work on PPG and GSR - CSV
feature extraction. - Pickle
- Came across preprocessing - Npy, and npz

issues



W UMBC Baseline

@ Dataset-
O In-house dataset - Working Memory (WoM) Dataset
m Comprised of multi-modal data - GSR, PPG, EEG
m Collection 35 subjects performing four 4 different visual-spatial tasks
O BCIDataset -
m EEG data from 9 subjects where they were tasked with four motor
imagery tasks
m 22 channels
O MAUS Dataset - Mental Workload
m PixArt PPG watch & Procomp Infiniti PPG
m 22 subjects
o Sari Saba-Sadiya et al. Dataset - Anomaly detection through interpolation
m EEG data 32 channels, Visual-event potentials (VEP)



W UMBC GSR Features

The 4 statistical features we construct for each 5 second time window are as follows:
1. mean, 2. standard deviation, 3. maximum, and 4. Minimum.

24 EDA features, from feature 1 to 24:

Feature 1 to 4 are the 4 statistical features of the raw EDA data.

Feature 5 to 8 are the 4 statistical features of the first derivative of the raw EDA data.

Feature 9 to 12 are the 4 statistical features of the second derivative of the raw EDA data.
Feature 13 to 16 are the 4 statistical features of the 1Hz wavelet coefficients of the raw EDA data.
Feature 17 to 20 are the 4 statistical features of the 2Hz wavelet coefficients of the raw EDA data.
Feature 21 to 24 are the 4 statistical features of the 4Hz wavelet coefficients of the raw EDA data.



W UMBC

96 Acceleration features, from feature 25 to 120:
25 - 28: are the 4 statistical features of the 3-axis acceleration magnitude data.

Feature 29 to 32 are the 4 statistical features of the first derivative of the 3-axis acceleration magnitude
data.

Feature 33 to 36 are the 4 statistical features of the second derivative of the 3-axis acceleration
magnitude data.

Feature 37 to 40 are the 4 statistical features of the x axis acceleration data.

Feature 41 to 44 are the 4 statistical features of the first derivative of the x axis acceleration data.
Feature 45 to 48 are the 4 statistical features of the second derivative of the x axis acceleration data.
Feature 49 to 52 are the 4 statistical features of the y axis acceleration data.

Feature 53 to 56 are the 4 statistical features of the first derivative of the y axis acceleration data.
Feature 57 to 60 are the 4 statistical features of the second derivative of the y axis acceleration data.
Feature 61 to 64 are the 4 statistical features of the z axis acceleration data.

Feature 65 to 68 are the 4 statistical features of the first derivative of the z axis acceleration data.
Feature 69 to 72 are the 4 statistical features of the second derivative of the z axis acceleration data.

Feature 73 to 76 are the 4 statistical features of the 1Hz wavelet coefficients of the 3-axis acceleration
magnitude data.

Feature 77 to 80 are the 4 statistical features of the 2Hz wavelet coefficients of the 3-axis acceleration
magnitude data.

GSR Features cont.

Feature 81 to 84 are the 4 statistical features of the 4Hz wavelet coefficients of the 3-axis acceleration
magnitude data.

Feature 85 to 88 are the 4 statistical features of the 1Hz wavelet coefficients of the x axis acceleration
data.

Feature 89 to 92 are the 4 statistical features of the 2Hz wavelet coefficients of the x axis acceleration
data.

Feature 93 to 96 are the 4 statistical features of the 4Hz wavelet coefficients of the x axis acceleration
data.

Feature 97 to 100 are the 4 statistical features of the 1Hz wavelet coefficients of the y axis acceleration
data.

Feature 101 to 104 are the 4 statistical features of the 2Hz wavelet coefficients of the y axis acceleration
data.

Feature 105 to 108 are the 4 statistical features of the 4Hz wavelet coefficients of the y axis acceleration
data.

Feature 109 to 112 are the 4 statistical features of the 1Hz wavelet coefficients of the z axis acceleration
data.

Feature 113 to 116 are the 4 statistical features of the 2Hz wavelet coefficients of the z axis acceleration
data.

Feature 117 to 120 are the 4 statistical features of the 4Hz wavelet coefficients of the z axis acceleration
data.



W UMBC PPG Features

Feature
Time SDNN

NNS50

PNNS50

RMSSD

SDSD

TINN

TRI Index
Frequency TF

LF

HF

LFn

HFn

LF/HF




& UMBC ' EEG 22¢ch Results ABOD

feature: bandPwr_alpha Error % = 23.15340909090909 Fl-Score = 0.5084978070175439 Cohen Kappa = 0.02

8250118555653514

feature: bandPwr beta Error % = 20.170454545454543 Fl-Score = 0.5689803661605954 Cohen Kappa = 0.14

84693095282713

feature: bandPwr gamma Error % = 18.25284090909091 Fl-Score = 0.6125274122807017 Cohen Kappa = 0.23

392724070184956

feature: std_res Error % = 19.03409090909091 Fl-Score = 0.5977057080108318 Cohen Kappa = 0.20423794

581097954

feature: ratio_res Error % = 23.970170454545457 Fl-Score = 0.48721697859977975 Cohen Kappa = -0.012

934525890367699

feature: regqularity res Error % = 21.022727272727273 Fl-Score = 0.5556749610865904 Cohen Kappa = 0.

12109862671660432

feature: volt05_res Error % = 21.697443181818183 Fl-Score = 0.5388994373508458 Cohen Kappa = 0.0884

6939553965738

feature: voltl0_res Error % = 21.661931818181817 Fl-Score = 0.5401589912280701 Cohen Kappa = 0.0908

475035566697

feature: volt20_res Error % = 20.845170454545457 Fl-Score = 0.5618119811734641 Cohen Kappa = 0.1327

2835640472447

feature: df_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.0

feature: spikeNum Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.0
Results feature: deltaBurst Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.0

feature: sharpSpike_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.

0

feature: numBursts_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.0

feature: burstLenMean_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa =

0.0

feature: burstLenStd_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa =

0.0

feature: numSupps_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.0

feature: supplenMean_res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa =

0.0

feature: supplLenStd res Error % = 17.329545454545457 Fl-Score = 0.4525660964230171 Cohen Kappa = 0.

0

feature: coherence_res Error % = 23.082386363636363 Fl-Score = 0.5078447990294561 Cohen Kappa = 0.0

2744244567619958

Mean: Error Percent = 19.99067826704546 Fl-Score = 0.5141297023617234 Cohen Kappa = 0.06764291726825149
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) UMBC F1 and cohen kappa score

Error Percent: Overall percentage of correct

F1 score: Harmonic mean. Calculates mean of
precision vs recall.

Precision * Recall

F1 — 2 *
seore i Precision + Recall

Cohen Kappa: A measure of consistency.

total Accuracy —randomAccuracy

kappa =

1 —random Accuracy



W UMBC

EEG Results ABOD

- BCI Dataset -

EEG data from 9
subjects where they
were tasked with four
motor imagery tasks.

EEG Results ABOD
22 Channels:

Error Percent: 20.0%
F1 Score: 0.51
Cohen Kappa: 0.07

TABLE 1 | EEG Features.

Signal Descriptor References Brief description

Complexity features Degree of randomness or irregularity

Shannon entropy 22) Additive measure of signal stochasticity

Tsalis entropy (n = 10) (23) Non-additive measure of signal stochasticity
Information quantity (5, «. 8, B, ¥) (24) Entropy of a wavelet decomposed signal

Cepstrum coefficients (0 = 2) (25) Rate of change in signal spectral band power
Lyapunov exponent (26) Separation between signals with similar trajectories
Fractal embedding dimension @7) How signal properties change with scale

Hjorth mobility (28) Mean signal frequency

Hjorth complexity (28) Rate of change in mean signal frequency

False nearest neighbor (29) Signal continuity and smoothness

ARMA coefficients (n = 2) (30) Autoregressive coefficient of signal at (t-1) and (t-2)
Continuity features Clinically grounded signal characteristics

Median frequency The median spectral power

8 band power Spectral power in the 0-3 Hz range

6 band power Spectral power in the 4-7 Hz range

o band power Spectral power in the 8-15 Hz range

B band power Spectral power in the 16-31 Hz range

y band power Spegctral power above 32 Hz

Standard deviation 31) Average difference between signal value and it's mean
a/é ratio (14) Ratio of the power spectral density in & and § bands
Regularity (burst-suppression) (14) Measure of signal stationarity/spectral consistency
Voltage < (5, 10, 20 p) Low signal amplitude

Diffuse slowing 32) Indicator of peak power spectral density <8 Hz
Spikes (32) Signal amplitude exceeds u by 3¢ for 70 ms or less
Delta burst after spike 32) Increased & after spike, relative to é before spike
Sharp spike 32) Spikes lasting <70 ms

Number of bursts Number of amplitude bursts

Burst length p and o Statistical properties of bursts

Burst band powers (8, a, 8, 8, ¥} Spectral power of bursts

Number of suppressions Segments with contiguous amplitude suppression
Suppression length 1 and o Statistical properties of suppressions

Connectivity features Interactions between EEG electrode pairs
Coherence - § (14) Correlation in 0-4 Hz power between signals

Mutual information (18) Measure of dependence

Granger causality — All (33) measure of causality

Phase lag index (34) Association between the instantaneous phase of signals
Cross-correlation magnitude (35) Maximum correlation between two signals
Cross-correlation — lag (35) Time-delay that maximizes correlation between signals

The 58 EEG features fell into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).



WUMBC Update

Researching Other Data Sets:
Requirements for new dataset:

. Contains artifact annotations
. Is GSR or PPG

Implemented a save file for dataframe system
with numpy library.



UMBC Next Steps

- Try to run tmux
- Keep working on EEG data
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