

Performance Analysis of Heterogeneous Networks for Robotic Navigation

By Hersch Nathan

Problem Statement:

In the absence of WiFi network, LoRaWAN is a potential candidate to transmit data. However, the data transmission can be impacted due to low bandwidth. We analyze the performance of LoRa to observe the delay. We compare the same with WiFi.

In short: Is LoRaWAN a viable option for data transmission in the absence of WiFi?

Road Map

- Premise of Research & Background Information
- Related Works
- Methodology
- Results and Problems
- Conclusions
- Skills and Research Experience
- Acknowledgements

Premise of Research & Background Information

Research Premise -Environment

the date

Large Scale Disasters cause:

- Hazards
 - Collapsed Buildings
 - Hazardous Materials
 - Flooding
- Destruction of Infrastructure
 - Roads
 - Powerlines
 - Wireless networks

Research Premise -Need

- Danger to deploy humans
- Ought to use robots
 - Navigate hostile terrains
 - Autonomously make applicationoriented decisions
 - Send data to human personnel for decision-making
- Need for easily deployable, long range, and low-cost wireless communication

Research Premise – Problem 1

- Humans are smart
 - Can synthesis environments
 - Effective communicate via vocal radios
- Robots are dumb
 - Long time/high power to process environments
 - High wireless bandwidth to send data
- Lack of Infrastructure
 - Damaged/Destroyed

Research Premise – Wireless Options: WiFi

Wi-Fi

- Common place (i.e., pre-existing integrations with our robots)
- Short effective range (~50 meters)
- Need for much infrastructure

MQTT

 lightweight, publish-subscribe, machine to machine network protocol for message queue/message queuing service

Research Premise – Wireless Options: Satellite-Based

Satellite-Base Communication (i.e., LTE, 4G, 5G, Starlink, OneWeb, etc.)

- Easy to integrate via a tunnel
- Long Range
 - Covers mass regions of the earth
- High Cost
 - Satellite and End Node

Research Premise – Wireless Options: LoRa and LoRaWAN

LoRa

- Created for IoT applications
 - Long Range/Low Bandwidth
 - Leverage Chirp Spread Spectrum (CSS) technology
- Power efficient
 - Small chirps of data over Long Range
 - To sustain their battery life

LoRaWAN

- WAN
 - Wide area network
- Built ontop of LoRa
 - Easier to Manage for IoT

;=					Q Search organization. app		? A admin	
						, ,		
ŀ	Dashboard	Applications / I	magaTrans				DELETE	
	Network-servers	Applications / imagemans						
Ø	Gateway-profiles	DEVICES APPLICATION CONFIGURATION INTEGRATIONS FUOTA						
:	Organizations							
	All users						+ CREATE	
•	API keys	Later	Davias name	During Fill	Device are file	Liebergenie	Detterry	
hirp	stack 👻	Last seen	Device name	Device EUI	Device profile	Link margin	Battery	
	Org. dashboard	4 days ago	Sentinel	f015e20d72f40c1a	device_profile_otaa	n/a	n/a	
_	Org. users					Rows per page: 10 ▼ 1	-1 of 1 < >	
	Org. API kevs							
	Service-profiles							
-	Device-profiles							
)	Gateways							
	Applications							

Research Premise – Wireless Options: Summary 12

Related Works

Related Works – Edge Computing

DOCTOR

	HetroEdge	Previous Work of Saied Optimizing computing resources (time/power/bandwidth/latency) across a diversified			
		network			
	Heindall	mobile GPU coordination for Deep Neural Networks			
	MASA	framework for memory and computing resources for multi-Deep Neural Networks applications			
T	MAUI	automated system for allowing fine control of offloading of computing			
	BALB	(batch-aware latency-balanced) scheduling algorithm to drive object detection via images			
0	Others	Resource optimizing algorithms			

Related Works – LoRa and LoRaWAN

- Search and Rescue Case Study proposes X-IoCA (Internet of Cooperative Agents Architecture)
 - Framework for integrating heterogeneous sensor networks, heterogeneous robotic networks, multiedge computing, and 5G communications in cooperative field applications

Methodology

Testing Premise

What is the latency (time) to send unprocessed images across WiFi (MQTT) and LoRaWAN?

Test Setup – Overview

DOCTO

Name	Туре	Count	Average Size	Total Size	File Type	From
1A	Small Images	6	7.8kb	46.8kb	png	TestFileDownload
2A	Extra Small	6	2.31kb	13.9kb	jpg	bounding_box_test
2B	Extra Small	12	2.29kb	27.5kb	jpg	bounding_box_test
2C	Extra Small	24	2.18kb	52.5kb	jpg	bounding_box_test
3A	Medium	6	49kb	294kb	jpg	Saeid Feature Extraction
3B	Medium	12	55.7kb	668.8kb	jpg	Saeid Feature Extraction
4A	Large	6	0.25mb	1.5mb	jpg	Fire and Smoke Dataset
4B	Large	12	2.04mb	24.5mb	jpg	Fire and Smoke Dataset

Datasets

Dataset – 3A, 3B

Dataset – 4A, 4B

Results and Problems

Problems – Memory of Radio

- Our radio based on Arudino M0
- 32Kb of flash
- Can't fill a full glass with more water

Conclusions

Conclusions

Viable option

We can send large amounts of data using LoRaWAN

LoRaWAN preformed as expectedly

Orders of magnitude longer than WiFi

Need further research

Some sort of data compression is needed Needs to balance latency with computational time

Skills and Research Experience

Skills

- Embedded Development
- MQTT networking
- Multi-layer Networking
- Python
- Dockers
- LaTeX
- Modal AI Drone Deployment
- Data Analysis

Research Experience

- Independently Explore Problems
- Read and Understand Academic Works
- Contribute to an ongoing project

Acknowledgements

This research was partly supported through a Research Experience for Undergraduates (REU) funded by NSF Grant #2050999, ANL Grant #W911NF2120076, ONR Grant #N00014-23-1-2119, and NSF CNS EAGER Grant #2233879

Special Thanks

- Md. Saeid Anwar
 - My graduate student mentor
- Research Assistant Professor Anuradha Ravi, PhD
- Professor Nirmalya Roy, PhD
 - Principal Investigator
- Mobile Pervasive & Sensor Computing Lab Members
- Center for Real-time Distributed Sensing and Autonomy Lab Members
- My fellow REU participants
 - I have made memories and friends for a lifetime